scholarly journals An Improved Round Robin CPU Scheduling Algorithm based on Priority of Process

2018 ◽  
Vol 7 (4.5) ◽  
pp. 238 ◽  
Author(s):  
Govind Prasad Arya ◽  
Kumar Nilay ◽  
Devendra Prasad

The most important and integral part of a computer system is its operating system. Scheduling various resources is one of the most critical tasks an operating system needs to perform. Process scheduling being one of those tasks, involves various techniques that define how more than one processes can be executed simultaneously. The primary aim here is to the system more efficient and faster. The fundamental scheduling algorithms are: First Come First Serve (FCFS), Round Robin, Priority Based Scheduling, and Shortest Job First (SJF). This paper focuses on Round Robin Scheduling algorithm and various issues related to it. One major issue in RR scheduling is determining the length of Time Quantum. If the Time Quantum is too large RR scheduling behaves as FCFS. On the other hand, if it is too small it forces considerable increase in the number of context switches. Our main objective is to overcome this limitation of traditional RR scheduling algorithm and maximize CPU utilization, further, leading to more efficient and faster system. Here we propose an algorithm that categorizes available processes into High Priority processes and Low Priority process. The proposed algorithm reduces the average waiting time of High Priority processes in all cases and of Low Priority processes in not all but some cases. The overall waiting time changes on the basis of set of processes considered. The simulation results justify that the proposed schemes reduces the overall average waiting time when compared to the existing schemes. 

After studying various CPU scheduling algorithms in Operating System, Round Robin scheduling algorithm is found to be most optimal algorithm in timeshared systems because of the static time quantum that is designated for every process. The efficacy of Round Robin algorithm entirely depends on the static time quantum that is being selected. After studying and analyzing Round Robin algorithm, I have proposed a new modified Round Robin algorithm that is based on shortest remaining burst time which has resulted in dynamic time quantum in place of static time quantum. This improves the performance of existing algorithm by reducing average waiting time and turn-around time and minimizing the number of context switches.


Author(s):  
Sonia Zouaoui ◽  
Lotfi Boussaid ◽  
Abdellatif Mtibaa

<p>This paper introduce a new approach for scheduling algorithms which aim to improve real time operating system CPU performance. This new approach of CPU Scheduling algorithm is based on the combination of round-robin (RR) and Priority based (PB) scheduling algorithms. This solution maintains the advantage of simple round robin scheduling algorithm, which is reducing starvation and integrates the advantage of priority scheduling. The proposed algorithm implements the concept of time quantum and assigning as well priority index to the processes. Existing round robin CPU scheduling algorithm cannot be dedicated to real time operating system due to their large waiting time, large response time, large turnaround time and less throughput. This new algorithm improves all the drawbacks of round robin CPU scheduling algorithm. In addition, this paper presents analysis comparing proposed algorithm with existing round robin scheduling algorithm focusing on average waiting time and average turnaround time.</p>


Author(s):  
N. Srilatha ◽  
M. Sravani ◽  
Y. Divya

In Round Robin Scheduling the time quantum is fixed and then processes are scheduled such that no process get CPU time more than one time quantum in one go. The performance of Round robin CPU scheduling algorithm is entirely dependent on the time quantum selected. If time quantum is too large, the response time of the processes is too much which may not be tolerated in interactive environment. If time quantum is too small, it causes unnecessarily frequent context switch leading to more overheads resulting in less throughput. In this paper a method using Manhattan distance has been proposed that decides a quantum value. The computation of the time quantum value is done by the distance or difference between the highest burst time and lowest burst time. The experimental analysis also shows that this algorithm performs better than RR algorithm and by reducing number of context switches, reducing average waiting time and also the average turna round time.


2020 ◽  
Vol 10 (15) ◽  
pp. 5134
Author(s):  
Samih M. Mostafa ◽  
Hirofumi Amano

Minimizing time cost in time-shared operating system is the main aim of the researchers interested in CPU scheduling. CPU scheduling is the basic job within any operating system. Scheduling criteria (e.g., waiting time, turnaround time and number of context switches (NCS)) are used to compare CPU scheduling algorithms. Round robin (RR) is the most common preemptive scheduling policy used in time-shared operating systems. In this paper, a modified version of the RR algorithm is introduced to combine the advantageous of favor short process and low scheduling overhead of RR for the sake of minimizing average waiting time, turnaround time and NCS. The proposed work starts by clustering the processes into clusters where each cluster contains processes that are similar in attributes (e.g., CPU service period, weights and number of allocations to CPU). Every process in a cluster is assigned the same time slice depending on the weight of its cluster and its CPU service period. The authors performed comparative study of the proposed approach and popular scheduling algorithms on nine groups of processes vary in their attributes. The evaluation was measured in terms of waiting time, turnaround time, and NCS. The experiments showed that the proposed approach gives better results.


2016 ◽  
Vol 2 (2) ◽  
pp. 19-21
Author(s):  
Achmad Teguh Wibowo

Aspek penting dalam sistem operasi adalah multiprogramming. Multiprogramming adalah proses atau metode yang digunakan untuk mengekssekusi beberapa proses secara bersamaan dalam memori. Tujuan utamanya adalah untuk meminimalkan Average Waiting Time, Average Turnaround Time, dan memaksimalkan penggunaan CPU. Ada berbagai algoritma yang digunakan dalam multiprogramming seperti First Come First Serve (FCFS), Shortest Job First (SJF), Priority Scheduling (PS) dan Round Robin(RR). Diantara semua itu yang paling sering digunakan adalah Round Robin. Round Robin merupakan algoritma penjadwalan yang optimal dengn sistem timeshared. Dalam RR, waktu kuantum bersifat statis dan algoritma ini bergantung pada besarnya kuantum yang dipilih/digunakan. Kuantum inilah yang berpengaruh pada Average Waiting Time dan Average Turnaround Time nantinya. Tujuan dari makalah ini adalah mengusulkan algoritma yang lebih baik daripada Round Robin sederhana dan Smart Optimized Round Robin sebelumnya.


Sign in / Sign up

Export Citation Format

Share Document