Timoshenko Beams

2020 ◽  
pp. 213-280
Author(s):  
Andreas Öchsner
Keyword(s):  
2012 ◽  
Vol 49 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Philippe Le Grognec ◽  
Quang-Huy Nguyen ◽  
Mohammed Hjiaj

2018 ◽  
Vol 10 (05) ◽  
pp. 1850058 ◽  
Author(s):  
Dong Zhao ◽  
Ying Liu

This paper addresses the transverse vibration of a nematic elastomer (NE) beam embedded in soft viscoelastic surroundings with the aim to clarify a new dissipation mechanism caused by dynamic soft elasticity of this soft material. Based on the viscoelasticity theory of NEs in low-frequency limit and the Timoshenko beam theory, the governing equation of motion is derived by using the Hamilton principle and energy method, and is solved by the complex modal analysis method. The dependence of vibration property on the intrinsic parameters of NEs (director rotation time, rubber relaxation time, anisotropic parameter) and foundation (spring, shear and damping constants) are discussed in detail. The results show that dynamic soft elasticity leads to anomalous anisotropy of energy transfer and attenuation. The relative stiffer foundation would restraint the rubber dissipation of viscoelastic beams, but has less influence on the director rotation dissipation, which is particular for NE beams. This study would provide a useful guidance in the dynamic design of NE apparatus embedded in soft viscous media.


2005 ◽  
Vol 12 (6) ◽  
pp. 425-434 ◽  
Author(s):  
Menglin Lou ◽  
Qiuhua Duan ◽  
Genda Chen

Timoshenko beams have been widely used in structural and mechanical systems. Under dynamic loading, the analytical solution of a Timoshenko beam is often difficult to obtain due to the complexity involved in the equation of motion. In this paper, a modal perturbation method is introduced to approximately determine the dynamic characteristics of a Timoshenko beam. In this approach, the differential equation of motion describing the dynamic behavior of the Timoshenko beam can be transformed into a set of nonlinear algebraic equations. Therefore, the solution process can be simplified significantly for the Timoshenko beam with arbitrary boundaries. Several examples are given to illustrate the application of the proposed method. Numerical results have shown that the modal perturbation method is effective in determining the modal characteristics of Timoshenko beams with high accuracy. The effects of shear distortion and moment of inertia on the natural frequencies of Timoshenko beams are discussed in detail.


1985 ◽  
Vol 111 (3) ◽  
pp. 416-430 ◽  
Author(s):  
Timothy J. Ross ◽  
Felix S. Wong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document