viscous media
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 34)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 36 (10) ◽  
pp. 2638-2648
Author(s):  
Rita Rahban ◽  
Anders Rehfeld ◽  
Christian Schiffer ◽  
Christoph Brenker ◽  
Dorte Louise Egeberg Palme ◽  
...  

Abstract STUDY QUESTION Do selective serotonin reuptake inhibitor (SSRI) antidepressants affect the function of human sperm? SUMMARY ANSWER The SSRI antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. WHAT IS KNOWN ALREADY In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+ and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. STUDY DESIGN, SIZE, DURATION We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH- and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. MAIN RESULTS AND THE ROLE OF CHANCE Several SSRIs affected [Ca2+]i and attenuated ligand-induced Ca2+ influx via CatSper. In particular, the SSRI Sertraline almost completely suppressed Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits the channel. Finally, Sertraline impaired ligand-induced acrosome reaction and sperm penetration into viscous media. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study. Future studies have to assess the physiological relevance in vivo. WIDER IMPLICATIONS OF THE FINDINGS The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Swiss Centre for Applied Human Toxicology (SCAHT), the Département de l’Instruction Publique of the State of Geneva, the German Research Foundation (CRU326), the Interdisciplinary Center for Clinical Research, Münster (IZKF; Str/014/21), the Innovation Fund Denmark (grant numbers 14-2013-4) and the EDMaRC research grant from the Kirsten and Freddy Johansen’s Foundation. The authors declare that no conflict of interest could be perceived as prejudicing the impartiality of the research reported. TRIAL REGISTRATION NUMBER NA.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
R Rahban ◽  
A Rehfeld ◽  
C Schiffer ◽  
C Brenker ◽  
D. Louise Egeberg Palme ◽  
...  

Abstract Study question Do Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants affect the function of human sperm? Summary answer The SSRI-antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. What is known already In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+, and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. Study design, size, duration We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH-, and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. Participants/materials, setting, methods The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin (PSA) and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. Main results and the role of chance Four SSRIs increased [Ca2+]i, two out of which also attenuated ligand-induced Ca2+ influx via CatSper. In contrast, Sertraline decreased [Ca2+]i and almost completely suppressed ligand-induced Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits human CatSper. Finally, Sertraline suppressed ligand-induced acrosome reaction and sperm penetration into viscous media. Limitations, reasons for caution This is an in vitro study. Future studies have to assess the physiological relevance in vivo. Wider implications of the findings The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. Trial registration number CRU326


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 645
Author(s):  
Hao Jia ◽  
Pengcheng Xu ◽  
Xinxin Li

Resonant micro/nanoelectromechanical systems (MEMS/NEMS) with on-chip integrated excitation and readout components, exhibit exquisite gravimetric sensitivities which have greatly advanced the bio/chemical sensor technologies in the past two decades. This paper reviews the development of integrated MEMS/NEMS resonators for bio/chemical sensing applications mainly in air and liquid. Different vibrational modes (bending, torsional, in-plane, and extensional modes) have been exploited to enhance the quality (Q) factors and mass sensing performance in viscous media. Such resonant mass sensors have shown great potential in detecting many kinds of trace analytes in gas and liquid phases, such as chemical vapors, volatile organic compounds, pollutant gases, bacteria, biomarkers, and DNA. The integrated MEMS/NEMS mass sensors will continuously push the detection limit of trace bio/chemical molecules and bring a better understanding of gas/nanomaterial interaction and molecular binding mechanisms.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1875
Author(s):  
Luu Nguyen ◽  
Pham Phong ◽  
Pham Nam ◽  
Do Manh ◽  
Nguyen Thanh ◽  
...  

Magnetic inductive heating (MIH) has been a topic of great interest because of its potential applications, especially in biomedicine. In this paper, the parameters characteristic for magnetic inductive heating power including maximum specific loss power (SLPmax), optimal nanoparticle diameter (Dc) and its width (ΔDc) are considered as being dependent on magnetic nanoparticle anisotropy (K). The calculated results suggest 3 different Néel-domination (N), overlapped Néel/Brownian (NB), and Brownian-domination (B) regions. The transition from NB- to B-region changes abruptly around critical anisotropy Kc. For magnetic nanoparticles with low K (K < Kc), the feature of SLP peaks is determined by a high value of Dc and small ΔDc while those of the high K (K > Kc) are opposite. The decreases of the SLPmax when increasing polydispersity and viscosity are characterized by different rates of d(SLPmax)/dσ and d(SLPmax)/dη depending on each domination region. The critical anisotropy Kc varies with the frequency of an alternating magnetic field. A possibility to improve heating power via increasing anisotropy is analyzed and deduced for Fe3O4 magnetic nanoparticles. For MIH application, the monodispersity requirement for magnetic nanoparticles in the B-region is less stringent, while materials in the N- and/or NB-regions are much more favorable in high viscous media. Experimental results on viscosity dependence of SLP for CoFe2O4 and MnFe2O4 ferrofluids are in good agreement with the calculations. These results indicated that magnetic nanoparticles in the N- and/or NB-regions are in general better for application in elevated viscosity media.


2020 ◽  
Vol 117 (51) ◽  
pp. 32380-32385
Author(s):  
Michael W. Martynowycz ◽  
Farha Khan ◽  
Johan Hattne ◽  
Jeff Abramson ◽  
Tamir Gonen

A structure of the murine voltage-dependent anion channel (VDAC) was determined by microcrystal electron diffraction (MicroED). Microcrystals of an essential mutant of VDAC grew in a viscous bicelle suspension, making it unsuitable for conventional X-ray crystallography. Thin, plate-like crystals were identified using scanning-electron microscopy (SEM). Crystals were milled into thin lamellae using a focused-ion beam (FIB). MicroED data were collected from three crystal lamellae and merged for completeness. The refined structure revealed unmodeled densities between protein monomers, indicative of lipids that likely mediate contacts between the proteins in the crystal. This body of work demonstrates the effectiveness of milling membrane protein microcrystals grown in viscous media using a focused ion beam for subsequent structure determination by MicroED. This approach is well suited for samples that are intractable by X-ray crystallography. To our knowledge, the presented structure is a previously undescribed mutant of the membrane protein VDAC, crystallized in a lipid bicelle matrix and solved by MicroED.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Egor Marin ◽  
Aleksandra Luginina ◽  
Anastasiia Gusach ◽  
Kirill Kovalev ◽  
Sergey Bukhdruker ◽  
...  

AbstractStructural studies of challenging targets such as G protein-coupled receptors (GPCRs) have accelerated during the last several years due to the development of new approaches, including small-wedge and serial crystallography. Here, we describe the deposition of seven datasets consisting of X-ray diffraction images acquired from lipidic cubic phase (LCP) grown microcrystals of two human GPCRs, Cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R), in complex with various antagonists. Five datasets were collected using small-wedge synchrotron crystallography (SWSX) at the European Synchrotron Radiation Facility with multiple crystals under cryo-conditions. Two datasets were collected using X-ray free electron laser (XFEL) serial femtosecond crystallography (SFX) at the Linac Coherent Light Source, with microcrystals delivered at room temperature into the beam within LCP matrix by a viscous media microextrusion injector. All seven datasets have been deposited in the open-access databases Zenodo and CXIDB. Here, we describe sample preparation and annotate crystallization conditions for each partial and full datasets. We also document full processing pipelines and provide wrapper scripts for SWSX and SFX data processing.A Correction to this paper has been published: https://doi.org/10.1038/s41597-020-00759-w


Sign in / Sign up

Export Citation Format

Share Document