A Fast Public Key Searchable Encryption Scheme Against Inside Keyword Attacks

Author(s):  
Can Liu ◽  
Ningjiang Chen ◽  
Ruwei Huang ◽  
Yongsheng Xie
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 77940-77950
Author(s):  
Ningbin Yang ◽  
Shumei Xu ◽  
Zhou Quan

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 20849-20861 ◽  
Author(s):  
Yulei Zhang ◽  
Xiangzhen Liu ◽  
Xiaoli Lang ◽  
Yongjie Zhang ◽  
Caifen Wang

Informatica ◽  
2012 ◽  
Vol 23 (4) ◽  
pp. 537-562 ◽  
Author(s):  
Ting-Yi Chang ◽  
Min-Shiang Hwang ◽  
Wei-Pang Yang

2009 ◽  
Vol 20 (10) ◽  
pp. 2907-2914 ◽  
Author(s):  
Liao-Jun PANG ◽  
Hui-Xian LI ◽  
Li-Cheng JIAO ◽  
Yu-Min WANG

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1389
Author(s):  
Jiwon Lee ◽  
Jihye Kim ◽  
Hyunok Oh

In public key broadcast encryption, anyone can securely transmit a message to a group of receivers such that privileged users can decrypt it. The three important parameters of the broadcast encryption scheme are the length of the ciphertext, the size of private/public key, and the performance of encryption/decryption. It is suggested to decrease them as much as possible; however, it turns out that decreasing one increases the other in most schemes. This paper proposes a new broadcast encryption scheme for tiny Internet of Things (IoT) equipment (BESTIE), minimizing the private key size in each user. In the proposed scheme, the private key size is O(logn), the public key size is O(logn), the encryption time per subset is O(logn), the decryption time is O(logn), and the ciphertext text size is O(r), where n denotes the maximum number of users, and r indicates the number of revoked users. The proposed scheme is the first subset difference-based broadcast encryption scheme to reduce the private key size O(logn) without sacrificing the other parameters. We prove that our proposed scheme is secure under q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) in the standard model.


Sign in / Sign up

Export Citation Format

Share Document