Digital Filter Implementation for Removal of Baseline Wander in ECG Signals

Author(s):  
R. Chitra ◽  
E. Priya
Author(s):  
Guoquan Li ◽  
S M Wali Ullah ◽  
Bilu Li ◽  
Jinzhao Lin ◽  
Huiqian Wang
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Xiang-kui Wan ◽  
Haibo Wu ◽  
Fei Qiao ◽  
Feng-cong Li ◽  
Yan Li ◽  
...  

One of the major noise components in electrocardiogram (ECG) is the baseline wander (BW). Effective methods for suppressing BW include the wavelet-based (WT) and the mathematical morphological filtering-based (MMF) algorithms. However, the T waveform distortions introduced by the WT and the rectangular/trapezoidal distortions introduced by MMF degrade the quality of the output signal. Hence, in this study, we introduce a method by combining the MMF and WT to overcome the shortcomings of both existing methods. To demonstrate the effectiveness of the proposed method, artificial ECG signals containing a clinical BW are used for numerical simulation, and we also create a realistic model of baseline wander to compare the proposed method with other state-of-the-art methods commonly used in the literature. The results show that the BW suppression effect of the proposed method is better than that of the others. Also, the new method is capable of preserving the outline of the BW and avoiding waveform distortions caused by the morphology filter, thereby obtaining an enhanced quality of ECG.


Sign in / Sign up

Export Citation Format

Share Document