Omega Results for Fourier Coefficients of Half-Integral Weight and Siegel Modular Forms

Author(s):  
Soumya Das
1986 ◽  
Vol 102 ◽  
pp. 51-77 ◽  
Author(s):  
Yoshio Tanigawa

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the Maass space. It is defined by the relation of the Fourier coefficients of modular forms as follows. Let f be a Siegel modular form on Sp(2,Z) of weight k, and let be its Fourier expansion, where . Then f belongs to the Maass space if and only if


2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


Author(s):  
Corentin Darreye

Abstract We study the probabilistic behavior of sums of Fourier coefficients in arithmetic progressions. We prove a result analogous to previous work of Fouvry–Ganguly–Kowalski–Michel and Kowalski–Ricotta in the context of half-integral weight holomorphic cusp forms and for prime power modulus. We actually show that these sums follow in a suitable range a mixed Gaussian distribution that comes from the asymptotic mixed distribution of Salié sums.


2018 ◽  
Vol 16 (1) ◽  
pp. 1335-1343
Author(s):  
SoYoung Choi ◽  
Chang Heon Kim

AbstractExtending works of Ono and Boylan to the half-integral weight case, we relate the algebraicity of Fourier coefficients of half-integral weight mock modular forms to the vanishing of Fourier coefficients of their shadows.


1985 ◽  
Vol 100 ◽  
pp. 83-96 ◽  
Author(s):  
Yoshio Tanigawa

In connection with the Shimura correspondence, Shintani [6] and Niwa [4] constructed a modular form by the integral with the theta kernel arising from the Weil representation. They treated the group Sp(1) × O(2, 1). Using the special isomorphism of O(2, 1) onto SL(2), Shintani constructed a modular form of half-integral weight from that of integral weight. We can write symbolically his case as “O(2, 1)→ Sp(1)” Then Niwa’s case is “Sp(l)→ O(2, 1)”, that is from the halfintegral to the integral. Their methods are generalized by many authors. In particular, Niwa’s are fully extended by Rallis-Schiffmann to “Sp(l)→O(p, q)”.


2014 ◽  
Vol 102 (4) ◽  
pp. 369-378 ◽  
Author(s):  
Narasimha Kumar ◽  
Soma Purkait

Sign in / Sign up

Export Citation Format

Share Document