Noninvasive Research on Cardiac Electrical Activity by Non-Gaussian Prior Bayesian Matching Pursuit

Author(s):  
Lu Bing ◽  
Yudong Li ◽  
Wen Si
1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


2014 ◽  
Vol 7 (5) ◽  
pp. 1901-1918 ◽  
Author(s):  
J. Ray ◽  
V. Yadav ◽  
A. M. Michalak ◽  
B. van Bloemen Waanders ◽  
S. A. McKenna

Abstract. The characterization of fossil-fuel CO2 (ffCO2) emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based) spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas) yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP), is used to identify the wavelet coefficients. We find that (i) the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii) that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii) that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Solbiati ◽  
A Paglialonga ◽  
L Costantini ◽  
E.G Caiani

Abstract Introduction Prolonged bed rest (BR) is an unnatural state, often related to hospitalization, chronic diseases and ageing, inducing reduced functional capacity in multiple body systems, possibly leading to cardiovascular deconditioning. We hypothesized that measuring this decline over time could represent the first step for the formulation of appropriate countermeasures or rehabilitation programs while in the hospital. Accordingly, our aim was to assess the effects of 10-day horizontal BR on cardiac electrical activity. Methods Ten healthy male volunteers (23±5 years) were enrolled in an hospital, after ethical approval and signed consent, to participate to a 10-day strict horizontal BR campaign, preceded and followed by 2 days in the facility, respectively as acclimatization and recovery. The 12-leads 24-hours Holter ECG (1000 Hz, H12+, Mortara Instrument Inc.) was acquired 1 day before BR (PRE), the 5th (BR5) and 10th day (BR10) of bedridden immobilization. From each recording, beat-to-beat RR and QTend interval series, as well as T wave amplitude (Tamp) and upslope (Tslope) were computed. Statistical analysis was applied to test changes induced by BR (ANOVA with Tukey test, p<0.05), separately for day (7:00–23:00) and night (23:00–7:00) periods. Results Daily RR and QTend duration increased during BR, with peak changes at BR5 compared to PRE (+13.3% and +3% respectively), and were still prolonged at BR10 (+12.6% and +2.6%). During the night, while RR increased (BR5:+5.3%; BR10:+1.3%), QTend was found progressively shortened (BR5: −1.6%; BR10: −2.9%). Also, day and night Tamp (BR10: −19.5%) and Tslope (BR10 day: −17.1%; night: −7.8%) were found progressively reduced with the duration of BR. Conclusion During BR, cardiac electrical activity is affected by 10-days bedridden immobilization. Noticeably, a mismatch in RR-QTend relation was visible at night, where vagal autonomic system activity is prevailing. Funding Acknowledgement Type of funding source: Other. Main funding source(s): Agenzia Spaziale Italiana (ASI)


Author(s):  
Matthijs JM Cluitmans ◽  
Joel Karel ◽  
Pietro Bonizzi ◽  
Monique MJ de Jong ◽  
Paul GA Volders ◽  
...  

Automatika ◽  
2016 ◽  
Vol 57 (2) ◽  
Author(s):  
Siniša Sovilj ◽  
Vladimir Čeperić ◽  
Ratko Magjarević

1991 ◽  
Vol 24 (3) ◽  
pp. 282
Author(s):  
Roberta Maestri ◽  
Beatrice Aimi ◽  
Donatella Stilli ◽  
Patrizia Ciarlini ◽  
Giuseppe Regoliosi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document