3D Point Cloud Principal Curve Extraction and Surface Reconstruction

Author(s):  
Feng Zeng
2011 ◽  
Vol 121-126 ◽  
pp. 609-616
Author(s):  
Dao Qing Sheng ◽  
Guo Yue Chen ◽  
Kazuki Saruta ◽  
Yuki Terata

In this paper, an approach based on local curvature feature matching for 3D face recognition is proposed. K-L transformation is employed to adjust coordinate system and coarsely align 3D point cloud. Based on B-splines approximation, 3D facial surface reconstruction is implemented. Through analyzing curvature features of the fitted surface, local rigid facial patches are extracted. According to the extracted local patches, feature vectors are constructed to execute final recognition. Experimental results demonstrate high performance of the presented method and also show that the method is fairly effective for 3D face recognition.


2021 ◽  
Vol 177 ◽  
pp. 57-74
Author(s):  
Jiali Han ◽  
Mengqi Rong ◽  
Hanqing Jiang ◽  
Hongmin Liu ◽  
Shuhan Shen

2021 ◽  
Author(s):  
Qian ZHAO ◽  
Xiaorong GAO ◽  
Jinlong LI ◽  
Yu ZHANG ◽  
Bingren CHEN ◽  
...  

GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


Sign in / Sign up

Export Citation Format

Share Document