growth stages
Recently Published Documents





2022 ◽  
Vol 263 ◽  
pp. 107463
Yongcai Dang ◽  
Lijie Qin ◽  
Lirong Huang ◽  
Jianqin Wang ◽  
Bo Li ◽  

Itamar R. Teixeira ◽  
Paulo R. Lopes ◽  
Westefann S. Sousa ◽  
Gisele C. da S. Teixeira

ABSTRACT The response capacity of the bean to fix atmospheric nitrogen is questionable, mainly due to its inability to supply all the nitrogen in the flowering and grain filling phases when the crop needs it most. Thus, a new application of inoculant can keep the population of rhizobia in the soil at adequate levels, meeting all the nitrogen demands of the plant. This study aimed to investigate the nodulation capacity and the production of beans submitted to doses and reinoculation of Rhizobium in topdressing under field conditions in two growth stages. For this, an experiment was conducted using a randomized block design with four replicates in a 4 × 2 + 2 factorial scheme. The treatments consisted of the application of four doses of liquid inoculant containing Rhizobium tropici (SEMIA 4088), in the concentration 2 × 109 CFU g-1, in topdressing (0, 100, 200 and 400 mL ha-1), in two development stages (V4 and R5) of plants, and two additional treatments (inoculation via seed at a dose of 100 g of the product per 50 kg of seeds and mineral nitrogen fertilization at a dose of 16 kg ha-1 applied at sowing and 60 kg ha-1 in topdressing, divided into two stages, with half being applied at the stage V3 and the other half in V4 stage).The inoculant application increased the nodulation rates of bean cultivar BRS Cometa and the dry biomass produced by plants, using doses of 232 and 221 mL ha-1, respectively. The dose of 257mL ha-1 of the liquid inoculant applied in topdressing at the V4 stage, and the inoculation via seed provide greater common bean yield without supplementing mineral nitrogen.

2022 ◽  
Vol 262 ◽  
pp. 107407
Fei Chen ◽  
Ningbo Cui ◽  
Shouzheng Jiang ◽  
Hongping Li ◽  
Yaosheng Wang ◽  

2022 ◽  
Vol 73 (1) ◽  
pp. 161-172

Field experiments were conducted on the research farm of IARI, New Delhi during Rabi 2016-17 and 2017-18. Three varieties of wheat (PBW-723, HD-2967 and HD-3086) were sown on three different dates for generating different weather condition during various phenological stages of crop. Results showed that during early crop growth stages soil moisture had higher value and soil temperature had lower value and with progress of crop growth stage, the moisture in the upper layer decreased and soil temperature increased significantly as compared to the bottom layers. During tillering and jointing stage, air temperature within canopy was more and relative humidity was less while during flowering and grain filling stage, air temperature within canopy was less and relative humidity was more in timely sown crop as compared to late and very late sown crop. Radiation use efficiency and relative leaf water content had significantly higher value while leaf water potential had lower value in timely sown crop followed by late and very late sown crop. Yield had higher value in HD-3086 followed by HD-2967 and PBW-723 in all weather conditions. Canopy air temperature difference had positive value in very late sown crop particularly during flowering and grain-filling stages. This reflects in the yield. Yield was more in timely sown crop as compared to late and very late sown crop.  

2022 ◽  
Vol 12 ◽  
Pei Wang ◽  
Jianping Dai ◽  
Luyun Luo ◽  
Yong Liu ◽  
Decai Jin ◽  

The variation of phyllosphere bacterial and fungal communities along elevation gradients may provide a potential link with temperature, which corresponds to an elevation over short geographic distances. At the same time, the plant growth stage is also an important factor affecting phyllosphere microorganisms. Understanding microbiological diversity over changes in elevation and among plant growth stages is important for developing crop growth ecological theories. Thus, we investigated variations in the composition of the rice phyllosphere bacterial and fungal communities at five sites along an elevation gradient from 580 to 980 m above sea level (asl) in the Ziquejie Mountain at the seedling, heading, and mature stages, using high-throughput Illumina sequencing methods. The results revealed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, and Bacteroidetes, and the dominant fungal phyla were Ascomycota and Basidiomycota, which varied significantly at different elevation sites and growth stages. Elevation had a greater effect on the α diversity of phyllosphere bacteria than on that phyllosphere fungi. Meanwhile, the growth stage had a great effect on the α diversity of both phyllosphere bacteria and fungi. Our results also showed that the composition of bacterial and fungal communities varied significantly along elevation within the different growth stages, in terms of both changes in the relative abundance of species, and that the variations in bacterial and fungal composition were well correlated with variations in the average elevation. A total of 18 bacterial and 24 fungal genera were significantly correlated with elevational gradient, displaying large differences at the various growth stages. Soluble protein (SP) shared a strong positive correlation with bacterial and fungal communities (p < 0.05) and had a strong significant negative correlation with Serratia, Passalora, unclassified_Trichosphaeriales, and antioxidant enzymes (R > 0.5, p < 0.05), and significant positive correlation with the fungal genera Xylaria, Gibberella, and Penicillium (R > 0.5, p < 0.05). Therefore, it suggests that elevation and growth stage might alter both the diversity and abundance of phyllosphere bacterial and fungal populations.

Sign in / Sign up

Export Citation Format

Share Document