Design and Implementation of Elliptic Curve Digital Signature Using Bit Coin Curves Secp256K1 and Secp384R1 for Base10 and Base16 Using Java

Author(s):  
Deepak S. Sakkari ◽  
Mohammed Mujeer Ulla
Electronics ◽  
2017 ◽  
Vol 6 (2) ◽  
pp. 46 ◽  
Author(s):  
Anissa Sghaier ◽  
Medien Zeghid ◽  
Chiraz Massoud ◽  
Mohsen Mahchout

Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


2008 ◽  
Vol 8 (10) ◽  
pp. 1919-1925 ◽  
Author(s):  
Morteza Nikooghada ◽  
Mohammad Reza Bonyadi ◽  
Ehsan Malekian ◽  
Ali Zakerolhos

Author(s):  
R. Anitha ◽  
R. S. Sankarasubramanian

This chapter presents a new simple scheme for verifiable encryption of elliptic curve digital signature algorithm (ECDSA). The protocol we present is an adjudicated protocol, that is, the trusted third party (TTP) takes part in the protocol only when there is a dispute. This scheme can be used to build efficient fair exchanges and certified email protocols. In this paper we also present the implementation issues. We present a new algorithm for multiplying two 2n bits palindromic polynomials modulo xp–1 for prime p = 2n + 1 for the concept defined in Blake, Roth, and Seroussi (1998), and it is compared with the Sunar-Koc parallel multiplier given in Sunar and Koc (2001).


Sign in / Sign up

Export Citation Format

Share Document