Generalized Symbolic Dynamics Approach for Characterization of Time Series

Author(s):  
S. Suriyaprabhaa ◽  
Greeshma Gopinath ◽  
R. Sangeerthana ◽  
S. Alfiya ◽  
P. Asha ◽  
...  
2021 ◽  
Author(s):  
Daniel Chavez-Leyva ◽  
Guadalupe Dorantes-Mendez ◽  
Samantha Alvarado-Jalomo ◽  
Lisbeth Camargo-Marin ◽  
Mercedes J. Gaitan-Gonzalez

Author(s):  
Sayyed Mohammad Javad Mirzadeh ◽  
Shuanggen Jin ◽  
Esmaeel Parizi ◽  
Estelle Chaussard ◽  
Roland Bürgmann ◽  
...  
Keyword(s):  

Author(s):  
Susana Blanco ◽  
Silvia Kochen ◽  
Rodrigo Quian Quiroga ◽  
Luis Riquelme ◽  
Osvaldo A. Rosso ◽  
...  

2017 ◽  
pp. 211-230
Author(s):  
W. Kulp Christopher ◽  
J. Niskala Brandon

2003 ◽  
Vol 13 (09) ◽  
pp. 2657-2668 ◽  
Author(s):  
Karsten Keller ◽  
Heinz Lauffer

In order to extract and to visualize qualitative information from a high-dimensional time series, we apply ideas from symbolic dynamics. Counting certain ordinal patterns in the given series, we obtain a series of matrices whose entries are symbol frequencies. This matrix series is explored by simple methods from nominal statistics and information theory. The method is applied to detect and visualize qualitative changes of EEG data related to epileptic activity.


Sign in / Sign up

Export Citation Format

Share Document