neural signals
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 238)

H-INDEX

52
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Timothée Proix ◽  
Jaime Delgado Saa ◽  
Andy Christen ◽  
Stephanie Martin ◽  
Brian N. Pasley ◽  
...  

AbstractReconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks. Based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future brain computer interfaces, and assessed their performance to discriminate speech items in articulatory, phonetic, and vocalic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings show that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding.


2022 ◽  
Author(s):  
Philip Kennedy ◽  
A. Ganesh ◽  
A.J. Cervantes

Abstract Summary The motivation of someone who is locked-in, that is, paralyzed and mute, is to find relief for their loss of function. The data presented in this report is part of an attempt to restore one of those lost functions, namely, speech. An essential feature of the development of a speech prosthetic is optimal decoding of patterns of recorded neural signals during silent or covert speech, that is, speaking ‘inside the head’ with no audible output due to the paralysis of the articulators. The aim of this paper is to illustrate the importance of both fast and slow single unit firings recorded from an individual with locked-in syndrome and from an intact participant speaking silently. Long duration electrodes were implanted in the motor speech cortex for up to 13 years in the locked-in participant. The data herein provide evidence that slow firing single units are essential for optimal decoding accuracy. Additional evidence indicates that slow firing single units can be conditioned in the locked-in participant five years after implantation, further supporting their role in decoding.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jordan Prosky ◽  
Jackson Cagle ◽  
Kristin K. Sellers ◽  
Ro’ee Gilron ◽  
Cora de Hemptinne ◽  
...  

Deep brain stimulation (DBS) is a plausible therapy for various neuropsychiatric disorders, though continuous tonic stimulation without regard to underlying physiology (open-loop) has had variable success. Recently available DBS devices can sense neural signals which, in turn, can be used to control stimulation in a closed-loop mode. Closed-loop DBS strategies may mitigate many drawbacks of open-loop stimulation and provide more personalized therapy. These devices contain many adjustable parameters that control how the closed-loop system operates, which need to be optimized using a combination of empirically and clinically informed decision making. We offer a practical guide for the implementation of a closed-loop DBS system, using examples from patients with chronic pain. Focusing on two research devices from Medtronic, the Activa PC+S and Summit RC+S, we provide pragmatic details on implementing closed- loop programming from a clinician’s perspective. Specifically, by combining our understanding of chronic pain with data-driven heuristics, we describe how to tune key parameters to handle feature selection, state thresholding, and stimulation artifacts. Finally, we discuss logistical and practical considerations that clinicians must be aware of when programming closed-loop devices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Azam Meykadeh ◽  
Arsalan Golfam ◽  
Ali Motie Nasrabadi ◽  
Hayat Ameri ◽  
Werner Sommer

While most studies on neural signals of online language processing have focused on a few—usually western—subject-verb-object (SVO) languages, corresponding knowledge on subject-object-verb (SOV) languages is scarce. Here we studied Farsi, a language with canonical SOV word order. Because we were interested in the consequences of second-language acquisition, we compared monolingual native Farsi speakers and equally proficient bilinguals who had learned Farsi only after entering primary school. We analyzed event-related potentials (ERPs) to correct and morphosyntactically incorrect sentence-final syllables in a sentence correctness judgment task. Incorrect syllables elicited a late posterior positivity at 500–700 ms after the final syllable, resembling the P600 component, as previously observed for syntactic violations at sentence-middle positions in SVO languages. There was no sign of a left anterior negativity (LAN) preceding the P600. Additionally, we provide evidence for a real-time discrimination of phonological categories associated with morphosyntactic manipulations (between 35 and 135 ms), manifesting the instantaneous neural response to unexpected perturbations. The L2 Farsi speakers were indistinguishable from L1 speakers in terms of performance and neural signals of syntactic violations, indicating that exposure to a second language at school entry may results in native-like performance and neural correlates. In nonnative (but not native) speakers verbal working memory capacity correlated with the late posterior positivity and performance accuracy. Hence, this first ERP study of morphosyntactic violations in a spoken SOV nominative-accusative language demonstrates ERP effects in response to morphosyntactic violations and the involvement of executive functions in non-native speakers in computations of subject-verb agreement.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hong Gi Yeom ◽  
Hyundoo Jeong

Studies on brain mechanisms enable us to treat various brain diseases and develop diverse technologies for daily life. Therefore, an analysis method of neural signals is critical, as it provides the basis for many brain studies. In many cases, researchers want to understand how neural signals change according to different conditions. However, it is challenging to find distinguishing characteristics, and doing so requires complex statistical analysis. In this study, we propose a novel analysis method, FTF (F-value time-frequency) analysis, that applies the F-value of ANOVA to time-frequency analysis. The proposed method shows the statistical differences among conditions in time and frequency. To evaluate the proposed method, electroencephalography (EEG) signals were analyzed using the proposed FTF method. The EEG signals were measured during imagined movement of the left hand, right hand, foot, and tongue. The analysis revealed the important characteristics which were different among different conditions and similar within the same condition. The FTF analysis method will be useful in various fields, as it allows researchers to analyze how frequency characteristics vary according to different conditions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kefan Wang ◽  
Xiaonan Zhang ◽  
Chengru Song ◽  
Keran Ma ◽  
Man Bai ◽  
...  

It is well established that epilepsy is characterized by the destruction of the information capacity of brain network and the interference with information processing in regions outside the epileptogenic focus. However, the potential mechanism remains poorly understood. In the current study, we applied a recently proposed approach on the basis of resting-state fMRI data to measure altered local neural dynamics in mesial temporal lobe epilepsy (mTLE), which represents how long neural information is stored in a local brain area and reflect an ability of information integration. Using resting-state-fMRI data recorded from 36 subjects with mTLE and 36 healthy controls, we calculated the intrinsic neural timescales (INT) of neural signals by summing the positive magnitude of the autocorrelation of the resting-state brain activity. Compared to healthy controls, the INT values were significantly lower in patients in the right orbitofrontal cortices, right insula, and right posterior lobe of cerebellum. Whereas, we observed no statistically significant changes between patients with long- and short-term epilepsy duration or between left-mTLE and right-mTLE. Our study provides distinct insight into the brain abnormalities of mTLE from the perspective of the dynamics of the brain activity, highlighting the significant role of intrinsic timescale in understanding neurophysiological mechanisms. And we postulate that altered intrinsic timescales of neural signals in specific cortical brain areas may be the neurodynamic basis of cognitive impairment and emotional comorbidities in mTLE patients.


2021 ◽  
Author(s):  
Ran Wang ◽  
Xupeng Chen ◽  
Amirhossein Khalilian-Gourtani ◽  
Leyao Yu ◽  
Patricia Dugan ◽  
...  

AbstractSpeech production is a complex human function requiring continuous feedforward commands together with reafferent feedback processing. These processes are carried out by distinct frontal and posterior cortical networks, but the degree and timing of their recruitment and dynamics remain unknown. We present a novel deep learning architecture that translates neural signals recorded directly from cortex to an interpretable representational space that can reconstruct speech. We leverage state-of-the-art learnt decoding networks to disentangle feedforward vs. feedback processing. Unlike prevailing models, we find a mixed cortical architecture in which frontal and temporal networks each process both feedforward and feedback information in tandem. We elucidate the timing of feedforward and feedback related processing by quantifying the derived receptive fields. Our approach provides evidence for a surprisingly mixed cortical architecture of speech circuitry together with decoding advances that have important implications for neural prosthetics.


2021 ◽  
Vol 13 ◽  
Author(s):  
Asma Braham chaouche ◽  
Maryam Rezaei ◽  
Daphné Silvestre ◽  
Angelo Arleo ◽  
Rémy Allard

Age-related decline in visual perception is usually attributed to optical factors of the eye and neural factors. However, the detection of light by cones converting light into neural signals is a crucial intermediate processing step of vision. Interestingly, a novel functional approach can evaluate many aspects of the visual system including the detection of photons by cones. This approach was used to investigate the underlying cause of age-related visual decline and found that the detection rate of cones was considerably affected with healthy aging. This functional test enabling to evaluate the detection of photons by cones could be particularly useful to screen for retinal pathologies affecting cones such as age-related macular degeneration. However, the paradigm used to functionally measure the detection of photons was complex as it was evaluating many other properties of the visual system. The aim of the current mini review is to clarify the underlying rationale of functionally evaluating the detection of photons by cones, describe a simpler approach to evaluate it, and review the impact of aging on the detection rate of cones.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mattia Arlotti ◽  
Matteo Colombo ◽  
Andrea Bonfanti ◽  
Tomasz Mandat ◽  
Michele Maria Lanotte ◽  
...  

Deep brain stimulation (DBS) is used for the treatment of movement disorders, including Parkinson’s disease, dystonia, and essential tremor, and has shown clinical benefits in other brain disorders. A natural path for the improvement of this technique is to continuously observe the stimulation effects on patient symptoms and neurophysiological markers. This requires the evolution of conventional deep brain stimulators to bidirectional interfaces, able to record, process, store, and wirelessly communicate neural signals in a robust and reliable fashion. Here, we present the architecture, design, and first use of an implantable stimulation and sensing interface (AlphaDBSR System) characterized by artifact-free recording and distributed data management protocols. Its application in three patients with Parkinson’s disease (clinical trial n. NCT04681534) is shown as a proof of functioning of a clinically viable implanted brain-computer interface (BCI) for adaptive DBS. Reliable artifact free-recordings, and chronic long-term data and neural signal management are in place.


Author(s):  
Shaikh Faisal ◽  
Mojtaba Amjadipour ◽  
Kimi Izzo ◽  
James Singer ◽  
Avi Bendavid ◽  
...  

Abstract Brain-machine interfaces are key components for the development of hands-free, brain -controlled devices. Electroencephalogram (EEG) electrodes are particularly attractive for harvesting the neural signals in a non-invasive fashion. Here, we explore the use of epitaxial graphene grown on silicon carbide on silicon for detecting the electroencephalogram signals with high sensitivity. This dry and non-invasive approach exhibits a markedly improved skin contact impedance when benchmarked to commercial dry electrodes, as well as superior robustness, allowing prolonged and repeated use also in a highly saline environment. In addition, we report the newly -observed phenomenon of surface conditioning of the epitaxial graphene electrodes. The prolonged contact of the epitaxial graphene with the skin electrolytes functionalize the grain boundaries of the graphene, leading to the formation of a thin surface film of water through physisorption and consequently reducing its contact impedance by more than 75%. This effect is primed in highly saline environments, and could be also further tailored as pre-conditioning to enhance the performance and reliability of the epitaxial graphene sensors.


Sign in / Sign up

Export Citation Format

Share Document