series data
Recently Published Documents


TOTAL DOCUMENTS

10043
(FIVE YEARS 6301)

H-INDEX

99
(FIVE YEARS 30)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-26
Author(s):  
Omid Hajihassani ◽  
Omid Ardakanian ◽  
Hamzeh Khazaei

The abundance of data collected by sensors in Internet of Things devices and the success of deep neural networks in uncovering hidden patterns in time series data have led to mounting privacy concerns. This is because private and sensitive information can be potentially learned from sensor data by applications that have access to this data. In this article, we aim to examine the tradeoff between utility and privacy loss by learning low-dimensional representations that are useful for data obfuscation. We propose deterministic and probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data such that intrusive inferences are prevented while desired inferences can still be made with sufficient accuracy. In the deterministic case, we use a linear transformation to move the representation of input data in the latent space such that the reconstructed data is likely to have the same public attribute but a different private attribute than the original input data. In the probabilistic case, we apply the linear transformation to the latent representation of input data with some probability. We compare our technique with autoencoder-based anonymization techniques and additionally show that it can anonymize data in real time on resource-constrained edge devices.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-23
Author(s):  
Divya Saxena ◽  
Jiannong Cao

Spatio-temporal (ST) data is a collection of multiple time series data with different spatial locations and is inherently stochastic and unpredictable. An accurate prediction over such data is an important building block for several urban applications, such as taxi demand prediction, traffic flow prediction, and so on. Existing deep learning based approaches assume that outcome is deterministic and there is only one plausible future; therefore, cannot capture the multimodal nature of future contents and dynamics. In addition, existing approaches learn spatial and temporal data separately as they assume weak correlation between them. To handle these issues, in this article, we propose a stochastic spatio-temporal generative model (named D-GAN) which adopts Generative Adversarial Networks (GANs)-based structure for more accurate ST prediction in multiple time steps. D-GAN consists of two components: (1) spatio-temporal correlation network which models spatio-temporal joint distribution of pixels and supports a stochastic sampling of latent variables for multiple plausible futures; (2) a stochastic adversarial network to jointly learn generation and variational inference of data through implicit distribution modeling. D-GAN also supports fusion of external factors through explicit objective to improve the model learning. Extensive experiments performed on two real-world datasets show that D-GAN achieves significant improvements and outperforms baseline models.


2022 ◽  
Vol 24 (3) ◽  
pp. 1-26
Author(s):  
Nagaraj V. Dharwadkar ◽  
Anagha R. Pakhare ◽  
Vinothkumar Veeramani ◽  
Wen-Ren Yang ◽  
Rajinder Kumar Mallayya Math

This paper presents design and experiments for a production line monitoring system. The system is designed based on an existing production line which mapping to the smart grid standards. The Discrete wavelet transform (DWT) and regression neural network (RNN) are applied to the operation modes data analysis. DWT used to preprocess the signals to remove noise from the raw signals. The output of DWT energy distribution has given as an input to the GRNN model. The neural network GRNN architecture involves multi-layer structures. Mean Absolute Percentage Error (MAPE) loss has used in the GRNN model, which is used to forecast the time-series data. Current research results can only apply to the single production line but in future, it will used for multiple production lines.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

This paper presents design and experiments for a production line monitoring system. The system is designed based on an existing production line which mapping to the smart grid standards. The Discrete wavelet transform (DWT) and regression neural network (RNN) are applied to the operation modes data analysis. DWT used to preprocess the signals to remove noise from the raw signals. The output of DWT energy distribution has given as an input to the GRNN model. The neural network GRNN architecture involves multi-layer structures. Mean Absolute Percentage Error (MAPE) loss has used in the GRNN model, which is used to forecast the time-series data. Current research results can only apply to the single production line but in future, it will used for multiple production lines.


Author(s):  
Chandan Kumar

Abstract: Computer vision is a process by which we can understand how the images and videos are stored and manipulated, also it helps in the process of retrieving data from either images or videos. Computer Vision is part of Artificial Intelligence. Computer-Vision plays a major role in Autonomous cars, Object detections, robotics, object tracking, etc. OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in the commercial products. It comes with a highly improved deep learning (dnn ) module. This module now supports a number of deep learning frameworks, including Caffe, TensorFlow, and Torch/PyTorch. This does allow us to take our models trained using dedicated deep learning libraries/tools and then efficiently use them directly inside our OpenCV scripts. MediaPipe is a framework mainly used for building audio, video, or any time series data. With the help of the MediaPipe framework, we can build very impressive pipelines for different media processing functions like Multi-hand Tracking, Face Detection, Object Detection and Tracking, etc.


2022 ◽  
Vol 4 (3) ◽  
pp. 683-693
Author(s):  
Reni Ria Armayani Hasibuan ◽  
Anggi Kartika ◽  
Firdha Aigha Suwito ◽  
Lismaini Agustin

This study has the benefit of analyzing the effect of regional gross domestic product on poverty in the city of Medan in 2010-2020. The research method used is a quantitative method with reference to a descriptive approach. The data used is time series data on economic growth and poverty at the Central Statistics Agency (BPS) of Medan City in 2010-2020. Data collection techniques used are journals, book documentation, and previous reports. The technique of analyzing the data uses simple linear regression analysis which is carried out to determine whether the model used is free from deviations from the classical assumption test. The equations obtained from the simple linear regression analysis test Y = 24576.325 – 0.365X and have the understanding that the GRDP variable (X) has a significant effect on Poverty (Y). Obtained a value of R2 (R square) of 0.556 with the understanding that the independent variable, namely GRDP, affects the variable of the poverty level in Medan City by 55.6%. Meanwhile, the remaining 44.4% are influenced by different independent variables and are not included in this study. For this reason, it can be concluded that when GRDP increases, it will have an impact on decreasing the value of Poverty in Medan City, and vice versa. Keywords: Gross Regional Domestic Product; Poverty; Medan city


Sign in / Sign up

Export Citation Format

Share Document