Different functional changes recorded in open angle glaucoma and anterior ischemic optic neuropathy

1980 ◽  
Vol 50 (1) ◽  
pp. 169-184 ◽  
Author(s):  
J. M. Enoch ◽  
C. R. Fitzgerald ◽  
E. C. Campos ◽  
L. A. Temme
2018 ◽  
Vol 29 (2) ◽  
pp. 202-209 ◽  
Author(s):  
Gema Rebolleda ◽  
Ane Pérez-Sarriegui ◽  
Laura Díez-Álvarez ◽  
Victoria De Juan ◽  
Francisco J Muñoz-Negrete

Purpose: To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Methods: Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch’s membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Results: Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch’s membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. Conclusion: A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch’s membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch’s membrane opening has been considered a stable reference for disk-related measures.


2011 ◽  
Vol 28 (2) ◽  
pp. 155-162 ◽  
Author(s):  
R.S. WANG ◽  
P.L. LV ◽  
W.J. WANG ◽  
X.D. WANG ◽  
X.J. ZHANG ◽  
...  

AbstractNumerous methods and drugs have been used to treat anterior ischemic optic neuropathy (AION); however, further investigations to determine the value of treatments for AION have been impeded by the lack of appropriate animal models of AION, significantly impacting on in-depth study of the disease. A rat model of AION was established, and corresponding functional changes of the fundus were observed using fundus fluorescein angiography (FFA), optical coherence tomography (OCT), and flash visual-evoked potential (F-VEP) in order to confirm the reliability of the AION model histopathologically. One day after model establishment, histopathology demonstrated that portions of the optic disc were highly edematous, with edema of nerve fibers and loose tissue, accompanied by displacement of the surrounding retina. At 23 days, the optic disc and surrounding nerve fiber layers had become thinner. None of the above-mentioned changes was observed in the laser, hematoporphyrin derivative (HPD), or naive groups. The results of fundus, FFA, F-VEP, and OCT—within 90 days after model establishment—confirmed that krypton red laser irradiation (647 nm), applied 2 h after HPD injection, can establish an ideal animal model of AION.


Sign in / Sign up

Export Citation Format

Share Document