optic nerve
Recently Published Documents


TOTAL DOCUMENTS

12276
(FIVE YEARS 2334)

H-INDEX

145
(FIVE YEARS 12)

Author(s):  
Breno Douglas Dantas Oliveira ◽  
Fabrício Oliveira Lima ◽  
Hellen do Carm Homem ◽  
Alice Albuquerque Figueirêdo ◽  
Vitoria Maria Batista Freire ◽  
...  

2022 ◽  
Vol 3 (3) ◽  

BACKGROUND During initial exposure and removal of craniopharyngioma in pediatric patients with severe visual field deficits, the authors have encountered severe deformation of the optic apparatus by taut anterior cerebral arteries as seen during both frontal craniotomy and transsphenoidal exposures. OBSERVATIONS The authors report two pediatric patients with craniopharyngioma whose severe preoperative visual deficits were associated not only with large suprasellar masses but also with severe optic nerve and chiasm compression by taut anterior cerebral arteries. In each patient, the optic nerves were partially cleft by these vessels’ indenting them. LESSONS The role of a taut anterior cerebral artery complex in compression of the optic apparatus in patients with suprasellar tumors has been reported previously, but the intraoperative images in these two cases dramatically reveal this phenomenon.


eNeuro ◽  
2022 ◽  
pp. ENEURO.0429-21.2022
Author(s):  
Anddre Osmar Valdivia ◽  
Sanjoy K. Bhattacharya
Keyword(s):  

2022 ◽  
Vol 9 (2) ◽  
pp. e1134
Author(s):  
Jana Remlinger ◽  
Adrian Madarasz ◽  
Kirsten Guse ◽  
Robert Hoepner ◽  
Maud Bagnoud ◽  
...  

Background and ObjectivesMyelin oligodendrocyte glycoprotein antibody–associated disorder (MOGAD) is a rare, autoimmune demyelinating CNS disorder, distinct from multiple sclerosis and neuromyelitis optica spectrum disorder. Characterized by pathogenic immunoglobulin G (IgG) antibodies against MOG, a potential treatment strategy for MOGAD is to reduce circulating IgG levels, e.g., by interference with the IgG recycling pathway mediated by the neonatal Fc receptor (FcRn). Although the optic nerve is often detrimentally involved in MOGAD, the effect of FcRn blockade on the visual pathway has not been assessed. Our objective was to investigate effects of a monoclonal anti-FcRn antibody in murine MOG-IgG–associated experimental autoimmune encephalomyelitis (EAE).MethodsWe induced active MOG35-55 EAE in C57Bl/6 mice followed by the application of a monoclonal MOG-IgG (8-18C5) 10 days postimmunization (dpi). Animals were treated with either a specific monoclonal antibody against FcRn (α-FcRn, 4470) or an isotype-matched control IgG on 7, 10, and 13 dpi. Neurologic disability was scored daily on a 10-point scale. Visual acuity was assessed by optomotor reflex. Histopathologic hallmarks of disease were assessed in the spinal cord, optic nerve, and retina. Immune cell infiltration was visualized by immunohistochemistry, demyelination by Luxol fast blue staining and complement deposition and number of retinal ganglion cells by immunofluorescence.ResultsIn MOG-IgG–augmented MOG35-55 EAE, anti-FcRn treatment significantly attenuated neurologic disability over the course of disease (mean area under the curve and 95% confidence intervals (CIs): α-FcRn [n = 27], 46.02 [37.89–54.15]; isotype IgG [n = 24], 66.75 [59.54–73.96], 3 independent experiments), correlating with reduced amounts of demyelination and macrophage infiltration into the spinal cord. T- and B-cell infiltration and complement deposition remained unchanged. Compared with isotype, anti-FcRn treatment prevented reduction of visual acuity over the course of disease (median cycles/degree and interquartile range: α-FcRn [n = 16], 0.50 [0.48–0.55] to 0.50 [0.48–0.58]; isotype IgG [n = 17], 0.50 [0.49–0.54] to 0.45 [0.39–0.51]).DiscussionWe show preserved optomotor response and ameliorated course of disease after anti-FcRn treatment in an experimental model using a monoclonal MOG-IgG to mimic MOGAD. Selectively targeting FcRn might represent a promising therapeutic approach in MOGAD.


2022 ◽  
Author(s):  
Nadege Sarrazin ◽  
Estelle Chavret-Recculon ◽  
Corinne Bachelin ◽  
Mehdi Felfli ◽  
Rafik Arab ◽  
...  

White matter disorders of the CNS such as MS, lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue, to prevent neuronal degeneration and promote recovery. Most of these strategies are developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined non-human primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculo-motor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This non-human primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair pro-myelinating/neuroprotective therapies to the clinic for myelin disorders such as MS.


2022 ◽  
Author(s):  
Ana N Strat ◽  
Alexander Kirschner ◽  
Hannah Yoo ◽  
Ayushi Singh ◽  
Tyler Bague ◽  
...  

In glaucoma, astrocytes within the optic nerve head (ONH) rearrange their actin cytoskeleton, while becoming reactive and upregulating intermediate filament glial fibrillary acidic protein (GFAP). Increased transforming growth factor beta 2 (TGFβ2) levels have been implicated in glaucomatous ONH dysfunction. A key limitation of using conventional 2D culture to study ONH astrocyte behavior is the inability to faithfully replicate the in vivo ONH microenvironment. Here, we engineer a 3D ONH astrocyte hydrogel to better mimic in vivo mouse ONH astrocyte (MONHA) morphology, and test induction of MONHA reactivity using TGFβ2. Primary MONHAs were isolated from C57BL/6J mice and cell purity confirmed. To engineer 3D cell-laden hydrogels, MONHAs were mixed with photoactive extracellular matrix components (collagen type I, hyaluronic acid) and crosslinked for 5 minutes using a photoinitiator (0.025% riboflavin) and UV light (405-500 nm, 10.3 mW/cm2). MONHA-encapsulated hydrogels were cultured for 3 weeks, and then treated with TGFβ2 (2.5, 5.0 or 10 ng/ml) for 7 days to assess for reactivity. Following encapsulation, MONHA retained high cell viability in hydrogels and continued to proliferate over 4 weeks as determined by live/dead staining and MTS assays. Sholl analysis demonstrated that MONHAs within hydrogels developed increasing process complexity with longer process length over time. Cell processes connected with neighboring cells, coinciding with Connexin43 expression within astrocytic processes. Treatment with TGFβ2 induced reactivity in MONHA-encapsulated hydrogels as determined by altered F-actin cytoskeletal morphology, increased GFAP expression, and elevated fibronectin and collagen IV deposition. Our data sets the stage for future use of this 3D biomimetic ONHA-encapsulated hydrogel to investigate ONHA behavior in response to glaucomatous insult.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ha-Jung Kim ◽  
Yeon Ju Kim ◽  
Jiyoung Kim ◽  
Hyungtae Kim ◽  
Young-Jin Ro ◽  
...  

AbstractApplying a pneumatic tourniquet provides surgeons with a bloodless surgical field. However, application of the tourniquet induces various physiological changes. We evaluated the effect of tourniquet deflation on the intracranial pressure by using ultrasonography to measure the optic nerve sheath diameter (ONSD) in patients undergoing lower limb surgery. The ONSD was measured in 20 patients at five time points: after anesthetic induction (T0) and immediately before (T1), immediately after (T2), 5 min after (T3), and 10 min after tourniquet deflation (T4). Hemodynamic and respiratory variables were recorded. The ONSD showed significant differences at each point (P < 0.001). The ONSDs at T2 and T3 were significantly greater than that at T1 (P = 0.0007 and < 0.0001, respectively). The change in the end-tidal carbon dioxide partial pressure (EtCO2) was similar to the change in the ONSD. The change in the ONSD was significantly correlated with the change in the EtCO2 after tourniquet deflation (r = 0.484, P = 0.030). In conclusion, the ONSD, as an indicator of intracranial pressure, increased after tourniquet deflation in patients undergoing lower limb surgery. This was correlated with an increased EtCO2 and arterial carbon dioxide partial pressure.Trial registration: ClinicalTrials.gov (NCT03782077).


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Jason B. Jennings ◽  
Cynthia Oliva ◽  
Michael Joyce ◽  
Michael J. Vitto ◽  
Jordan Tozer ◽  
...  

Abstract Objectives Ultrasound measurement of the optic nerve sheath diameter (ONSD) is a rapid, non-invasive means to indirectly assess intracranial pressure. Previous research has demonstrated the ability of emergency physicians to measure ONSD accurately with bedside ultrasound when compared to CT scan or MRI, however the reliability of this measurement between two or more operators has been called into question (Hassen et al. in J Emerg Med 48:450–457, 2015; Shirodkar et al. in Ind J Crit Care Med 19:466–470, 2015). Given the need for accurate and precise measurement to use this as a screening exam, we sought to determine the inter-rater reliability between ONSD measurements obtained in real time by fellowship-trained emergency ultrasound physicians. Methods Three ultrasound fellowship-trained emergency physicians measured bilateral ONSD of 10 healthy volunteers using a high-frequency linear transducer. The physicians were blinded to the other scanners’ measurements, and no instructions were given other than to obtain the ONSD. Each sonographer measured the ONSD in real time and it was recorded by a research coordinator. All measurements were recorded in millimeters. Intraclass correlation coefficients (ICCs) were calculated to estimate the inter-rater reliability. Results A total of 60 measurements of ONSD were obtained. The average measurement was 4.3 mm (3.83–4.77). Very little variation was found between the three physicians, with a calculated ICC of 0.82 (95% confidence interval 0.63–0.92). Conclusions ONSD measurement obtained by ultrasound fellowship-trained emergency medicine physicians is a reliable measurement with a high degree of correlation between scanners.


2022 ◽  
Vol 15 ◽  
Author(s):  
Yuan-Bo Pan ◽  
Yiyu Sun ◽  
Hong-Jiang Li ◽  
Lai-Yang Zhou ◽  
Jianmin Zhang ◽  
...  

The function of glial cells in axonal regeneration after injury has been the subject of controversy in recent years. Thus, deeper insight into glial cells is urgently needed. Many studies on glial cells have elucidated the mechanisms of a certain gene or cell type in axon regeneration. However, studies that manipulate a single variable may overlook other changes. Here, we performed a series of comprehensive transcriptome analyses of the optic nerve head over a period of 90 days after optic nerve crush (ONC), showing systematic molecular changes in the optic nerve head (ONH). Furthermore, using weighted gene coexpression network analysis (WGCNA), we established gene module programs corresponding to various pathological events at different times post-ONC and found hub genes that may be potential therapeutic targets. In addition, we analyzed the changes in different glial cells based on their subtype markers. We revealed that the transition trend of different glial cells depended on the time course, which provides clues for modulating glial function in further research.


Sign in / Sign up

Export Citation Format

Share Document