Involvement of presynaptic H3 receptors in the inhibitory effect of histamine on serotonin release in the rat brain cortex

Author(s):  
K. Fink ◽  
E. Schlicker ◽  
A. Neise ◽  
M. G�thert
1997 ◽  
Vol 36 (9) ◽  
pp. 1221-1227 ◽  
Author(s):  
Ivar Von Kügelgen ◽  
Helga Koch ◽  
Klaus Starke

1958 ◽  
Vol 36 (6) ◽  
pp. 531-541 ◽  
Author(s):  
C. T. Beer ◽  
J. H. Quastel

A study has been made of the effects of acetaldehyde and n-valeric aldehyde on the respiration of rat brain cortex slices in the presence and absence of 0.1 M KCl. Acetaldehyde at low concentrations (1–2 mM) brings about a marked inhibition of potassium-stimulated respiration of brain cortex slices. The inhibition by acetaldehyde occurs at 1/200th the concentration at which ethanol produces the same effects. The stimulation of brain respiration due to potassium ions is abolished by acetaldehyde at concentrations that have no observable effect on the unstimulated respiration. Acetaldehyde and n-valeric aldehyde, at equivalent concentrations, have almost equal inhibitory effects on potassium-stimulated rat brain cortex respiration. The inhibitory effects of the aldehydes do not increase sharply with increase of their concentrations, in contrast to the effects of the corresponding alcohols. The aldehydes, in contrast to the corresponding alcohols, inhibit brain mitochondrial respiration as markedly as they inhibit brain cortex respiration. The inhibitory effect of the aldehyde on mitochondrial respiration with pyruvate as substrate is greater in the presence of small quantities of malate than in the absence of malate. The acetaldehyde inhibition is abolished on the addition of DPN. The results obtained with the aldehydes do not support the view that the corresponding alcohols exercise their inhibitive effects on brain respiration by preliminary conversion to the aldehydes. It is suggested that the aldehydes exercise their inhibitory effects on brain respiration by rapid attainment of equilibrium with a constituent of the brain respiratory system associated with a rate-limiting step in the citric acid cycle.


1962 ◽  
Vol 40 (1) ◽  
pp. 1439-1448
Author(s):  
J. P. von Wartburg

Rat brain cortex slices were incubated with 5-hydroxytryptophan-3-C14. A method for determination of 5-hydroxytryptamine-C14 and 5-hydroxyindolacetic acid-C14 formed in brain slices is described. Effects of inhibitors of 5-hydroxytryptophan decarboxylase and monoamine oxidase on the metabolic pathway of 5-hydroxytryptophan-3-C14 were measured. α-Methyl dopa (0.33 mM) decreased the level of 5-hydroxyindolacetic acid to a greater amount than that of 5-hydroxytryptamine. Iproniazid (3.3 mM) resulted in an accumulation of 5-hydroxytryptamine and a decrease of 5-hydroxyindolacetic acid formation of 65%. Pheniprazine (0.1 mM) exerted an inhibitory effect on both 5-hydroxytryptophan decarboxylase and monoamine oxidase. Chlorpromazine (0.5 mM) decreased the level of 5-hydroxytryptamine 60% and had a synergistic effect with the inhibition on respiration of brain slices and 5-hydroxytryptophan transport exerted by 0.2 M n-propanol.


1962 ◽  
Vol 40 (10) ◽  
pp. 1439-1448 ◽  
Author(s):  
J. P. von Wartburg

Rat brain cortex slices were incubated with 5-hydroxytryptophan-3-C14. A method for determination of 5-hydroxytryptamine-C14 and 5-hydroxyindolacetic acid-C14 formed in brain slices is described. Effects of inhibitors of 5-hydroxytryptophan decarboxylase and monoamine oxidase on the metabolic pathway of 5-hydroxytryptophan-3-C14 were measured. α-Methyl dopa (0.33 mM) decreased the level of 5-hydroxyindolacetic acid to a greater amount than that of 5-hydroxytryptamine. Iproniazid (3.3 mM) resulted in an accumulation of 5-hydroxytryptamine and a decrease of 5-hydroxyindolacetic acid formation of 65%. Pheniprazine (0.1 mM) exerted an inhibitory effect on both 5-hydroxytryptophan decarboxylase and monoamine oxidase. Chlorpromazine (0.5 mM) decreased the level of 5-hydroxytryptamine 60% and had a synergistic effect with the inhibition on respiration of brain slices and 5-hydroxytryptophan transport exerted by 0.2 M n-propanol.


1989 ◽  
Vol 340 (6) ◽  
pp. 633-638 ◽  
Author(s):  
Eberhard Schlicker ◽  
Klaus Fink ◽  
Marc Hinterthaner ◽  
Manfred G�thert

Sign in / Sign up

Export Citation Format

Share Document