storage proteins
Recently Published Documents


TOTAL DOCUMENTS

1307
(FIVE YEARS 192)

H-INDEX

76
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Lu-Lu Yu ◽  
Cui-Jiao Liu ◽  
Ye Peng ◽  
Zheng-Quan He ◽  
Fei Xu

Abstract Background Cyanide is a natural metabolite that exists widely in plants, and it is speculated to be involved in the regulation of various growth and development processes of plants in addition to being regarded as toxic waste. Previous studies have shown that exogenous cyanide treatment helps to improve seed germination, but the mechanism is still unclear. In this study, tomato (Solanum lycopersicum cv. Alisa Craig) was used as the material, and the effects of cyanide pretreatment at different concentrations on tomato seed germination were investigated. Results The results showed that exogenous application of a lower concentration of cyanide (10 μmol/L KCN) for 12 h strongly increased the tomato seed germination rate. RNA-Seq showed that compared with the control, a total of 15,418 differentially expressed genes (P<0.05) were obtained after pretreatment with KCN for 12 h, and in the next 12 h, a total of 13,425 differentially expressed genes (P<0.05) were regulated. GO and KEGG analyses demonstrated that exogenous KCN pretreatment was involved in regulating the expression (mainly downregulation) of seed storage proteins, thereby accelerating the degradation of stored proteins for seed germination. In addition, KCN pretreatment was also involved in stimulating glycolysis, the TCA cycle and oxidative phosphorylation. Notably, it is shown that KCN acted on the regulation of plant hormone biosynthesis and perception, i.e., down-regulated the gene expression of ABA biosynthesis and signal transduction, but up-regulated the expression of genes related to GA biosynthesis and response. Consistent with this, plant hormone measurements confirmed that the levels of ABA were reduced, but GA levels were induced after pretreatment with KCN. Conclusion These findings provide new insights into the regulation of seed germination by cyanide, that is cyanide-mediated seed germination occurs in a time- and dose-dependent manner, and is related to the mobilization of energy metabolism and the regulation of some plant hormone signals.


2022 ◽  
Author(s):  
Christopher Dennison ◽  
Jaeick Lee

A family of cytosolic copper (Cu) storage proteins (the Csps) are widespread in bacteria. The Csps can bind large quantities of Cu(I) via their Cys-lined four-helix bundles, and the majority are cytosolic (Csp3s). This is inconsistent with the current dogma that bacteria, unlike eukaryotes, have evolved not to maintain intracellular pools of Cu due to its potential toxicity. Sporulation in Bacillus subtilis has been used to investigate if a Csp3 can store Cu(I) in the cytosol for a target enzyme. The activity of the Cu-requiring endospore multi-Cu oxidase BsCotA (a laccase) increases under Cu-replete conditions in wild type B. subtilis, but not in the strain lacking BsCsp3. Cuprous ions readily transfer from BsCsp3, but not from the cytosolic copper metallochaperone BsCopZ, to BsCotA in vitro producing active enzyme. Both BsCsp3 and BsCotA are upregulated during late sporulation. The hypothesis we propose is that BsCsp3 acquires and stores Cu(I) in the cytosol for BsCotA.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Tao ◽  
Atta Mohi Ud Din ◽  
Lu An ◽  
Hao Chen ◽  
Ganghua Li ◽  
...  

Grain chalkiness is a key quality trait of the rice grain, whereas its underlying mechanism is still not thoroughly understood because of the complex genetic and environmental interactions. We identified a notched-belly (NB) mutant that has a notched-line on the belly of grains. The line dissects the endosperm into two distinct parts, the upper translucent part, and the bottom chalky part in the vicinity of the embryo. Using this mutant, our previous studies clued the negative influence of embryo on the biochemical makeup of the endosperm, suggesting the need for the in-depth study of the embryo effect on the metabolome of developing endosperm. This study continued to use the NB mutant to evolve a novel comparison method to clarify the role of embryo in the formation of a chalky endosperm. Grain samples of the wild-type (WT) and NB were harvested at 10, 20, and 30 days after fertilization (DAF), and then divided into subsamples of the embryo, the upper endosperm, and the bottom endosperm. Using non-targeted metabolomics and whole-genome RNA sequencing (RNA-seq), a nearly complete catalog of expressed metabolites and genes was generated. Results showed that the embryo impaired the storage of sucrose, amino acid, starch, and storage proteins in the bottom endosperm of NB by enhancing the expression of sugar, amino acids, and peptide transporters, and declining the expression of starch, prolamin, and glutelin synthesis-related genes. Importantly, the competitive advantage of the developing embryo in extracting the nutrients from the endosperm, transformed the bottom endosperm into an “exhaustive source” by diverting the carbon (C) and nitrogen (N) metabolism from synthetic storage to secondary pathways, resulting in impaired filling of the bottom endosperm and subsequently the formation of chalky tissue. In summary, this study reveals that embryo-induced metabolic shift in the endosperm is associated with the occurrence of grain chalkiness, which is of relevance to the development of high-quality rice by balancing the embryo–endosperm interaction.


2022 ◽  
Vol 119 (1) ◽  
pp. e2111281119
Author(s):  
Hsi-En Tsao ◽  
Shu Nga Lui ◽  
Anthony Hiu-Fung Lo ◽  
Shuai Chen ◽  
Hiu Yan Wong ◽  
...  

In Arabidopsis, vacuolar sorting receptor isoform 1 (VSR1) sorts 12S globulins to the protein storage vacuoles during seed development. Vacuolar sorting is mediated by specific protein–protein interactions between VSR1 and the vacuolar sorting determinant located at the C terminus (ctVSD) on the cargo proteins. Here, we determined the crystal structure of the protease-associated domain of VSR1 (VSR1-PA) in complex with the C-terminal pentapeptide (468RVAAA472) of cruciferin 1, an isoform of 12S globulins. The 468RVA470 motif forms a parallel β-sheet with the switch III residues (127TMD129) of VSR1-PA, and the 471AA472 motif docks to a cradle formed by the cargo-binding loop (95RGDCYF100), making a hydrophobic interaction with Tyr99. The C-terminal carboxyl group of the ctVSD is recognized by forming salt bridges with Arg95. The C-terminal sequences of cruciferin 1 and vicilin-like storage protein 22 were sufficient to redirect the secretory red fluorescent protein (spRFP) to the vacuoles in Arabidopsis protoplasts. Adding a proline residue to the C terminus of the ctVSD and R95M substitution of VSR1 disrupted receptor–cargo interactions in vitro and led to increased secretion of spRFP in Arabidopsis protoplasts. How VSR1-PA recognizes ctVSDs of other storage proteins was modeled. The last three residues of ctVSD prefer hydrophobic residues because they form a hydrophobic cluster with Tyr99 of VSR1-PA. Due to charge–charge interactions, conserved acidic residues, Asp129 and Glu132, around the cargo-binding site should prefer basic residues over acidic ones in the ctVSD. The structural insights gained may be useful in targeting recombinant proteins to the protein storage vacuoles in seeds.


2022 ◽  
Vol 52 (2) ◽  
Author(s):  
Natalia Carolina Moraes Ehrhardt-Brocardo ◽  
Cileide Maria Medeiros Coelho

ABSTRACT: Seed germination is a complex process controlled by many factors, in which physical and biochemical mechanisms are involved and the mobilization of reserves is crucial for this process to occur. Although, seed reserve mobilization is usually thought to be a post-germination process, seed reserve proteins mobilization occurs during germination. This study quantified seed proteins of bean genotypes during different hydration times, in order to understand the process of protein mobilization and whether there is relationship of this biochemical component with seed vigor. This study was conducted using seeds with different levels of vigor, genotypes with highest (13, 42, 55 and 81) and lowest (07, 23, 44, 50, IPR-88-Uirapurú and Iapar 81) physiological quality. High vigor genotypes showed greater efficiency in hydrolysis and mobilization of protein component, because they presented low globulins content in cotyledons at radicle protrusion in relation to low vigor genotypes (07, 23 and 50). The protein alpha-amylase inhibitor, observed in all genotypes, is involved with the longer time needed for radicle protrusion, according to the band intensity difference in genotypes 07, 44 and Iapar 81.


2021 ◽  
Vol 26 (2(49)) ◽  
pp. 73-85
Author(s):  
Yu. A. Popovych ◽  
O. M. Blagodarova ◽  
S. V. Chebotar

Introduction. Gliadins are monomeric and highly polymorphic storage proteins of wheat endosperm, which together with glutenins form a gluten complex that determines the breadmaking properties of wheat. Allelic variants of gliadins are an important feature in the selection of material for breeding, but their determination by electrophoresis in acid PAGE is quite difficult. Aim. The aim of this study was to investigate the polymorphism of the Taglgap microsatellite locus and to analyze its correspondence to the polymorphism of allelic variants of gliadins that have been revealed by acid PAGE electrophoresis. Methods. 140 cultivars and lines of bread wheat of Ukrainian and foreign selection were analyzed. Electrophoresis of storage proteins was performed in an acid PAGE according to the method of F. O. Poperellia (1989), allelic variants were designated according to the international nomenclature (Metakovsky et al., 2018). DNA was isolated by CTAB method and PCR was performed with primers to the Taglgap microsatellite (Devos et al., 1995). PCR products were fractionated in 7% PAGE and stained with silver staining method. Nucleotide sequences were searched by BLAST and aligned by MAFT methods. The main results. 19 allelic variants of gliadins and 11 alleles of the Taglgap locus were identified. In the collection of Ukrainian varieties there were Gli-B1b, Gli-B1c, Gli-B1d, Gli-B1e, Gli-B1f, Gli-B1g, Gli-B1h, Gli-B1l and Gli-B1o allelic variants and alleles of Taglgap 216 bp, 237 bp, 246 bp, 248 bp, 252 bp, 267 bp, 270 bp and null. In the foreign collection of varieties − Gli-B1a, Gli-B1b, Gli-B1c, Gli-B1d, Gli-B1e, Gli-B1f, Gli-B1g, Gli-B1h, Gli-B1i, Gli-B1j, Gli-B1k, Gli -B1l, Gli-B1m, Gli-B1n, Gli-B1o, Gli-B1p, Gli-B1q, Gli-B1r, Gli-B1s and 213 bp, 216 bp, 237 bp, 246 bp, 248 bp, 250 bp, 252 bp, 270 bp, 285 bp and null. Nucleotide sequence analysis in the NCBI database showed the presence of a number of other alleles of the Taglgap microsatellite not only in bread wheat but also in some species of the Triticum L. and Aegilops L. genus. Conclusions. The detected polymorphism correlates with the polymorphism of allelic variants of gliadins of Gli-B1 locus and makes it possible to identify Gli-B1a, Gli-B1d, Gli-B1h and Gli-B1l allelic variants, and for Ukrainian varieties with high probability also Gli-B1b allelic variant. However, this marker does not allow identifying Gli-B1c, which is important for selection.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4548
Author(s):  
María H. Guzmán-López ◽  
Susana Sánchez-León ◽  
Miriam Marín-Sanz ◽  
Isabel Comino ◽  
Verónica Segura ◽  
...  

Celiac disease (CD) is a genetically predisposed, T cell-mediated and autoimmune-like disorder caused by dietary exposure to the storage proteins of wheat and related cereals. A gluten-free diet (GFD) is the only treatment available for CD. The celiac immune response mediated by CD4+ T-cells can be assessed with a short-term oral gluten challenge. This study aimed to determine whether the consumption of bread made using flour from a low-gluten RNAi wheat line (named E82) can activate the immune response in DQ2.5-positive patients with CD after a blind crossover challenge. The experimental protocol included assessing IFN-γ production by peripheral blood mononuclear cells (PBMCs), evaluating gastrointestinal symptoms, and measuring gluten immunogenic peptides (GIP) in stool samples. The response of PBMCs was not significant to gliadin and the 33-mer peptide after E82 bread consumption. In contrast, PBMCs reacted significantly to Standard bread. This lack of immune response is correlated with the fact that, after E82 bread consumption, stool samples from patients with CD showed very low levels of GIP, and the symptoms were comparable to those of the GFD. This pilot study provides evidence that bread from RNAi E82 flour does not elicit an immune response after a short-term oral challenge and could help manage GFD in patients with CD.


Author(s):  
Frederike Zeibig ◽  
Benjamin Kilian ◽  
Michael Frei

Abstract Key message We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Abstract Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat (Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAAmAm genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.


Sign in / Sign up

Export Citation Format

Share Document