Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions

1994 ◽  
Vol 98 (2) ◽  
Author(s):  
CareyD. Balaban ◽  
Gennady Beryozkin
2001 ◽  
Vol 29 (02) ◽  
pp. 211-220 ◽  
Author(s):  
Chang Hyun Lee ◽  
Han Sol Jung ◽  
Tae Young Lee ◽  
Sang Ryoung Lee ◽  
Sang Won Yuk ◽  
...  

The purpose of this morphological study was to investigate the relation between the meridian, meridian points and viscera using neuroanatomical tracers. The common locations of the spinal cord and brain projecting to the stomach and Zusanli were observed following injection of CTB (cholera toxin B subunit) and pseudorabies viruses (PRV-Ba, Bartha strain and PRV-Ba-Gal, galactosidase insertion) into the stomach and Zusanli (ST36). After 4–5 days of survival following injection into twelve rats, they were perfused, and their spinal cords and brains were frozen sectioned (30 μm). These sections were stained by X-gal histochemical, CTB and PRV-Bia immunohistochemical staining methods, and examined with the light microscope. The results were as follows: Commonly labeled medulla oblongata regions were dorsal motor nucleus of vagus nerve (DMV), nucleus tractus solitarius (NTS) and area postrema (AP) following injection of CTB and PRV-Ba-Gal into stomach and Zusanli, respectively. In the spinal cord, commonly labeled neurons were found in thoracic, lumbar and sacral spinal segments. Densely labeled areas were found in lamina IV, V, VII (intermediolateral nucleus) and X of the spinal cord. In the brain, commonly labeled neurons were found in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, area postrema, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, locus coeruleus, parabrachial nucleus, Kolliker-Fuse nucleus, A5 cell group, central gray matter, paraventricular hypothalamic nucleus, lateral hypothalamic nucleus, retrochiasmatic hypothalamic nucleus, bed nucleus of stria terminals and amygdaloid nucleus. Thus central autonomic center project both to the stomach and Zusanli. These morphological results suggest that there is a commonality of CNS cell groups in brain controlling stomach (viscera) and Zusanli (limb).


1980 ◽  
Vol 238 (1) ◽  
pp. R57-R64 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

Experiments were done in cats anesthetized with chloralose, paralyzed and artificially ventilated cats to obtain electrophysiological evidence on the medullary site of origin of vagal cardioinhibitory fibers. The regions of the nucleus ambiguus (AMB), dorsal motor nucleus of the vagus (DMV), nucleus tractus solitarius (NTS), and external cuneate nucleus (ECN) were systematically explored for units responding both to antidromic stimulation of the cardiac branches of the vagus (CBV) and to orthodromic stimulation of the carotid sinus and aortic depressor nerves. Eighty-six single units conforming to these criteria were found in the medulla: 30 in the AMB, 26 in the DMV, 12 in the NTS, 8 in the NTS-DMV border region, and 10 in the ECN. Antidromically evoked spikes had durations of 0.5--2.5 ms and followed stimulation frequencies of 20--500 Hz. The axons of these units conducted at velocities of 3.3--20.8 m/s. The specificity of activation of medullary units by cardioinhibitory fibers was tested in 11 units, which were found to respond consistently with an antidromic spike to stimulation of CBV but not to stimulation of the thoracic vagus. In eight spinal animals low threshold (less than 15 microA) sites eliciting vagal bradycardia were found in the same medullary nuclei where cardioinhibitory units had been located. These results indicate that vagal cardioinhibitory axons, originate in at least three medullary nuclei, the AMB, DMV, and NTS. Unit activity from the ECN may have been recorded from carioinhibitory fibers because of the short duration of the spike potentials.


1993 ◽  
Vol 335 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Xu-Feng Huang ◽  
George Paxinos ◽  
Paul Halasz ◽  
Deborah McRitchie ◽  
Istvan Törk

1975 ◽  
Vol 229 (3) ◽  
pp. 783-789 ◽  
Author(s):  
J Schwaber ◽  
N Schneiderman

Unit activity evoked by electrical stimulation of the aortic and vagus nerves was recorded in the dorsal motor nucleus and nucleus solitarius of unanesthetized rabbits. Cardioinhibitory cells which showed antidromic activation to stimulation of the vagus nerve and synaptic activation to stimulation of the aortic nerve were localized in lateral dorsal motor nucleus 0.5-0.8 mm anterior of the obex. Additionally, units were found that appeared to be interneurons in the medullary pathway subserving baroreceptor reflex effects on cardioinhibitory neurons. These cells were activated by aortic, and usually vagus, nerve stimulation, appeared to be polysynaptically activated, and were located in medial nucleus solitarius rostral to the obex. Neurons reflecting a cardiac rhythm but not activated by aortic nerve stimulation were also observed.


2009 ◽  
Vol 513 (2) ◽  
pp. 237-248 ◽  
Author(s):  
Atsushi Saito ◽  
Takashi Sato ◽  
Hiroyuki Okano ◽  
Ken-Ichiro Toyoda ◽  
Hitoshi Bamba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document