nucleus ambiguus
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 20)

H-INDEX

40
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Aron Emmi ◽  
Stefania Rizzo ◽  
Luisa Barzon ◽  
Elisa Carturan ◽  
Alessandro Sinigaglia ◽  
...  

Abstract Neurological manifestations are common in COVID-19, the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite some reports of detection of SARS-CoV-2 in the brain and cerebrospinal fluid of patients with COVID-19, it is still unclear whether the virus can infect the central nervous system (CNS), and which neuropathological alterations can be ascribed to viral tropism rather than immune-mediated mechanisms. Available autopsy reports are often conflictual, reporting a heterogeneous spectrum of neuropathological alterations, while viral proteins and RNA were detected only in sparse cells within the brainstem; furthermore, there appears to be no consistent correlation between viral invasion and neuropathological alterations to date. Here, we assess the neuropathological changes occurring in 24 patients who died following a diagnosis of SARS-CoV-2 infection in Italy during the COVID-19 pandemic (from March 2020 to May 2021) and 10 age-matched controls with comparable medical conditions. Aside from a wide spectrum of neuropathological alterations, including astrogliosis, sparse lympho-monocytic infiltrations and several instances of small vessel thromboses, we identified 5 COVID-19 subjects presenting SARS-CoV-2-immunoreactive neurons within the boundaries of the solitary tract nucleus, nucleus ambiguus and substantia nigra in the brainstem. In these subjects, viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation targeting mainly the medulla oblongata and the mesencephalon, and was significantly higher when compared to controls. However, SARS-CoV-2 direct invasion did not appear to correlate with the severity of neuropathological changes. The results of this study support the neuroinvasive potential of SARS-CoV-2 by demonstrating the presence of viral proteins and genome sequences within the human brainstem, but further investigation is required to identify the link between invasion and consequent neuropathological alterations in humans.


2021 ◽  
pp. 158-168
Author(s):  
Jeremy K. Cutsforth-Gregory

The autonomic nervous system is involved in many important unconscious body functions. It is critical for maintaining the internal environment in response to changes in the external environment. The autonomic nervous system consists of peripheral components (sympathetic and parasympathetic nerves and ganglia) and central components (ventrolateral medulla, nucleus ambiguus, nucleus of the solitary tract, periaqueductal gray, anterior cingulate gyrus, insular cortex, amygdala, and hypothalamus). This chapter briefly reviews the anatomy and functional components of the autonomic nervous system and several anatomical clinical correlations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junqing Sun ◽  
Shiyue Pan ◽  
Emma Karey ◽  
Yi-Je Chen ◽  
Kent E. Pinkerton ◽  
...  

Background: Secondhand smoke (SHS), a major indoor pollutant, is a significant risk factor for cardiovascular morbidity and mortality including arrhythmias and sudden cardiac death. Exposure to SHS can produce autonomic imbalance, as evidenced by reduced heart rate variability (HRV)—a clinical metric of cardiac vagal regulation. Currently, the mechanisms through which SHS changes the vagal preganglionic neuronal inputs to the heart to produce this remains unknown.Objectives: To characterize the effect of SHS on both the excitability and action potential (AP) characteristics of anatomically identified cardiac vagal neurons (CVNs) in the nucleus ambiguus and examine whether SHS alters small conductance calcium-activated potassium (SK) channel activity of these CVNs.Methods: Adult male mice were exposed to four weeks of filtered air or SHS (3 mg/m3) 6 h/day, 5 day/week. Using patch-clamp recordings on identified CVNs in brainstem slices, we determined neuronal excitability and AP characteristics with depolarizing step- and ramp-current injections.Results: Four weeks of SHS exposure reduced spiking responses to depolarizing current injections and increased AP voltage threshold in CVNs. Perfusion with apamin (20 nM) magnified these SHS-induced effects, suggesting reduced SK channel activity may serve to minimize the SHS-induced decreases in CVNs excitability. Medium afterhyperpolarization (a measurement of SK channel activity) was smaller in the SHS group, further supporting a lower SK channel activity. AP amplitude, rise rate, fast afterhyperpolarization amplitude (a measurement of voltage-gated channel activity), and decay rate were higher in the SHS group at membrane voltages more positive to 0 mV, suggesting altered inactivation properties of voltage-dependent channels underlying APs.Discussion: SHS exposure reduced neuronal excitability of CVNs with compensatory attenuation of SK channel activity and altered AP characteristics. Neuroplasticity of CVNs could blunt regulatory cardiac vagal signaling and contribute to the cardiovascular consequences associated with SHS exposure, including reduced HRV.


2021 ◽  
Vol 65 (s1) ◽  
Author(s):  
Pilar Marcos ◽  
Rafael Coveñas

Several cholinergic regions have been detected in the brainstem of mammals. In general, these regions are constant among different species, and the nuclear complement is maintained in animals belonging to the same order. The cholinergic system of the brainstem has been partially described in Cetartiodactyla, except for the medulla oblongata. In this work carried out in the alpaca, the description of the cholinergic regions in this order is completed by the immunohistochemical detection of the enzyme choline acetyltransferase (ChAT). In addition, using double immunostaining techniques, the relationship between the cholinergic system and the distribution of calcitonin gene-related peptide (CGRP) previously described is analysed. Although these two substances are found in several brainstem regions, the coexistence in the same cell bodies was observed only in the laterodorsal tegmental nucleus, the nucleus ambiguus and the reticular formation. These results suggest that the interaction between ChAT and CGRP may be important in the regulation of voluntary movements, the control of rapid eye movement sleep and states of wakefulness as well as in reward mechanisms. Comparing the present results with others previously obtained by our group regarding the catecholaminergic system in the alpaca brainstem, it seems that CGRP may be more functionally related to the latter system than to the cholinergic system.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Tatiana Coverdell ◽  
Ruei‐Jen Abraham‐Fan ◽  
Stephen Abbott ◽  
John Campbell
Keyword(s):  

2021 ◽  
Author(s):  
Hemangini A Dhaibar ◽  
Kathryn A Hamilton ◽  
Edward Glasscock

ABSTRACTCardiorespiratory collapse following a seizure is a suspected cause of sudden unexpected death in epilepsy (SUDEP), the leading cause of epilepsy-related mortality. In the commonly used Kcna1 gene knockout (Kcna1−/−) mouse model of SUDEP, cardiorespiratory profiling reveals an array of aberrant breathing patterns that could contribute to risk of seizure-related mortality. However, the brain structures mediating these respiratory abnormalities remain unknown. We hypothesize that Kv1.1 deficiency in respiratory control centers of the brain contribute to respiratory dysfunction in Kcna1−/− mice leading to increased SUDEP risk. Thus, in this study, we first used immunohistochemistry to map expression of Kv1.1 protein in cardiorespiratory brain regions of wild-type Kcna1+/+ (WT) mice. Next, GFAP and Iba1 immunostaining was used to test for the presence of astrogliosis and microgliosis, respectively, in the cardiorespiratory centers of Kcna1−/− mice, which could be indicative of seizure-related brain injury that could impair breathing. In WT type mice, we detected Kv1.1 protein in all cardiorespiratory centers examined, including the basolateral amygdala, dorsal respiratory group, dorsal motor nucleus of vagus, nucleus ambiguus, ventral respiratory column, and pontine respiratory group, as well as chemosensory centers including the retrotrapezoid and median raphae nuclei. Extensive gliosis was observed in the same areas in Kcna1−/− mice suggesting that seizure-associated brain injury could contribute to respiratory abnormalities.


2021 ◽  
pp. S471-S478
Author(s):  
N PAVELKOVA ◽  
M BROZMANOVA ◽  
M JAYANTA PATIL ◽  
M KOLLARIK

The vagal motor fibers innervating the esophageal striated muscle are essential for esophageal motility including swallowing and vomiting. However, it is unknown which subtypes of voltage-gated sodium channels (NaV1s) regulate action potential conduction in these efferent nerve fibers. The information on the NaV1s subtypes is necessary for understanding their potential side effects on upper gut, as novel inhibitors of NaV1s are developed for treatment of pain. We used isolated superfused (35 °C) vagally-innervated mouse esophagus striated muscle preparation (mucosa removed) to measure isometric contractions of circular striated muscle evoked by electrical stimulation of the vagus nerve. NaV1 inhibitors were applied to the de-sheathed segment of the vagus nerve. Tetrodotoxin (TTX) applied to the vagus nerve completely abolished electrically evoked contractions. The selective NaV1.7 inhibitor PF-05089771 alone partially inhibited contractions and caused a >3-fold rightward shift in the TTX concentration-inhibition curve. The NaV1.1, NaV1.2 and NaV1.3 group inhibitor ICA-121431 failed to inhibit contractions, or to alter TTX concentration-inhibition curves in the absence or in the presence of PF-05089771. RT-PCR indicated lack of NaV1.4 expression in nucleus ambiguus and dorsal motor nucleus of the vagus nerve, which contain motor and preganglionic neurons projecting to the esophagus. We conclude that the action potential conduction in the vagal motor fibers to the esophageal striated muscle in the mouse is mediated by TTX-sensitive voltage gated sodium channels including NaV1.7 and most probably NaV1.6. The role of NaV1.6 is supported by ruling out other TTX-sensitive NaV1s (NaV1.1-1.4) in the NaV1.7-independent conduction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroshi Suzuki ◽  
Koji Araki ◽  
Toshiyasu Matsui ◽  
Yuya Tanaka ◽  
Kosuke Uno ◽  
...  

Abstract Recurrent laryngeal nerve (RLN) injury, in which hoarseness and dysphagia arise as a result of impaired vocal fold movement, is a serious complication. Misdirected regeneration is an issue for functional regeneration. In this study, we demonstrated the effect of TrkA inhibitors, which blocks the NGF-TrkA pathway that acts on the sensory/automatic nerves thus preventing misdirected regeneration among motor and sensory nerves, and thereby promoting the regeneration of motor neurons to achieve functional recovery. RLN axotomy rat models were used in this study, in which cut ends of the nerve were bridged with polyglycolic acid-collagen tube with and without TrkA inhibitor (TrkAi) infiltration. Our study revealed significant improvement in motor nerve fiber regeneration and function, in assessment of vocal fold movement, myelinated nerve regeneration, compound muscle action potential, and prevention of laryngeal muscle atrophy. Retrograde labeling demonstrated fewer labeled neurons in the vagus ganglion, which confirmed reduced misdirected regeneration among motor and sensory fibers, and a change in distribution of the labeled neurons in the nucleus ambiguus. Our study demonstrated that TrkAi have a strong potential for clinical application in the treatment of RLN injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shuai Cui ◽  
Shuqi Yao ◽  
Chunxiao Wu ◽  
Lulu Yao ◽  
Peidong Huang ◽  
...  

The descending motor nerve conduction of voluntary swallowing is mainly launched by primary motor cortex (M1). M1 can activate and regulate peripheral nerves (hypoglossal) to control the swallowing. Acupuncture at “Lianquan” acupoint (CV23) has a positive effect against poststroke dysphagia (PSD). In previous work, we have demonstrated that electroacupuncture (EA) could regulate swallowing-related motor neurons and promote swallowing activity in the essential part of central pattern generator (CPG), containing nucleus ambiguus (NA), nucleus of the solitary tract (NTS), and ventrolateral medulla (VLM) under the physiological condition. In the present work, we have investigated the effects of EA on the PSD mice in vivo and sought evidence for PSD improvement by electrophysiology recording and laser speckle contrast imaging (LSCI). Four main conclusions can be drawn from our study: (i) EA may enhance the local field potential in noninfarction area of M1, activate the swallowing-related neurons (pyramidal cells), and increase the motor conduction of noninfarction area in voluntary swallowing; (ii) EA may improve the blood flow in both M1 on the healthy side and deglutition muscles and relieve PSD symptoms; (iii) EA could increase the motor conduction velocity (MCV) in hypoglossal nerve, enhance the EMG of mylohyoid muscle, alleviate the paralysis of swallowing muscles, release the substance P, and restore the ability to drink water; and (iv) EA can boost the functional compensation of M1 in the noninfarction side, strengthen the excitatory of hypoglossal nerve, and be involved in the voluntary swallowing neural control to improve PSD. This research provides a timely and necessary experimental evidence of the motor neural regulation in dysphagia after stroke by acupuncture in clinic.


Sign in / Sign up

Export Citation Format

Share Document