N 5,N 10-Methenyltetrahydromethanopterin cyclohydrolase from the extremely thermophilic sulfate reducing Archaeoglobus fulgidus: comparison of its properties with those of the cyclohydrolase from the extremely thermophilic Methanopyrus kandleri

1993 ◽  
Vol 159 (3) ◽  
pp. 213-219 ◽  
Author(s):  
A. R. Klein ◽  
J. Breitung ◽  
D. Linder ◽  
K. O. Stetter ◽  
R. K. Thauer
2007 ◽  
Vol 189 (24) ◽  
pp. 8901-8913 ◽  
Author(s):  
Antje Labes ◽  
Peter Schönheit

ABSTRACT The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, α-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly β-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway.


2020 ◽  
Vol 154 ◽  
pp. 105056
Author(s):  
Oulfat Amin Ali ◽  
Emmanuel Aragon ◽  
Armand Fahs ◽  
Sylvain Davidson ◽  
Bernard Ollivier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document