scholarly journals The künneth formula in periodic cyclic homology

K-Theory ◽  
1996 ◽  
Vol 10 (2) ◽  
pp. 197-214 ◽  
Author(s):  
Ioannis Emmanouil
2015 ◽  
Vol 152 (3) ◽  
pp. 489-555 ◽  
Author(s):  
Anthony Blanc

The purpose of this work is to give a definition of a topological K-theory for dg-categories over$\mathbb{C}$and to prove that the Chern character map from algebraic K-theory to periodic cyclic homology descends naturally to this new invariant. This topological Chern map provides a natural candidate for the existence of a rational structure on the periodic cyclic homology of a smooth proper dg-algebra, within the theory of noncommutative Hodge structures. The definition of topological K-theory consists in two steps: taking the topological realization of algebraic K-theory and inverting the Bott element. The topological realization is the left Kan extension of the functor ‘space of complex points’ to all simplicial presheaves over complex algebraic varieties. Our first main result states that the topological K-theory of the unit dg-category is the spectrum$\mathbf{BU}$. For this we are led to prove a homotopical generalization of Deligne’s cohomological proper descent, using Lurie’s proper descent. The fact that the Chern character descends to topological K-theory is established by using Kassel’s Künneth formula for periodic cyclic homology and the proper descent. In the case of a dg-category of perfect complexes on a separated scheme of finite type, we show that we recover the usual topological K-theory of complex points. We show as well that the Chern map tensorized with$\mathbb{C}$is an equivalence in the case of a finite-dimensional associative algebra – providing a formula for the periodic homology groups in terms of the stack of finite-dimensional modules.


Author(s):  
Piotr M. Hajac ◽  
Tomasz Maszczyk

AbstractViewing the space of cotraces in the structural coalgebra of a principal coaction as a noncommutative counterpart of the classical Cartan model, we construct the cyclic-homology Chern–Weil homomorphism. To realize the thus constructed Chern–Weil homomorphism as a Cartan model of the homomorphism tautologically induced by the classifying map on cohomology, we replace the unital subalgebra of coaction-invariants by its natural H-unital nilpotent extension (row extension). Although the row-extension algebra provides a drastically different model of the cyclic object, we prove that, for any row extension of any unital algebra over a commutative ring, the row-extension Hochschild complex and the usual Hochschild complex are chain homotopy equivalent. It is the discovery of an explicit homotopy formula that allows us to improve the homological quasi-isomorphism arguments of Loday and Wodzicki. We work with families of principal coactions, and instantiate our noncommutative Chern–Weil theory by computing the cotrace space and analyzing a dimension-drop-like effect in the spirit of Feng and Tsygan for the quantum-deformation family of the standard quantum Hopf fibrations.


1997 ◽  
Vol 179 (2) ◽  
pp. 197-222 ◽  
Author(s):  
Randy McCarthy

Author(s):  
Christian Voigt

AbstractWe consider smooth actions of totally disconnected groups on simplicial complexes and compare different equivariant cohomology groups associated to such actions. Our main result is that the bivariant equivariant cohomology theory introduced by Baum and Schneider can be described using equivariant periodic cyclic homology. This provides a new approach to the construction of Baum and Schneider as well as a computation of equivariant periodic cyclic homology for a natural class of examples. In addition we discuss the relation between cosheaf homology and equivariant Bredon homology. Since the theory of Baum and Schneider generalizes cosheaf homology we finally see that all these approaches to equivariant cohomology for totally disconnected groups are closely related.


Author(s):  
Tom Hadfield ◽  
Ulrich Krähmer

AbstractWe complete the calculation of the twisted cyclic homology of the quantised coordinate ring = ℂq [SL(2)] of SL(2) that we began in [14]. In particular, a nontrivial cyclic 3-cocycle is constructed which also has a nontrivial class in Hochschild cohomology and thus should be viewed as a noncommutative geometry analogue of a volume form.


Author(s):  
E. Getzler ◽  
J.D.S. Jones ◽  
S.B. Petrack

Author(s):  
Dustin Clausen ◽  
Akhil Mathew ◽  
Matthew Morrow

2007 ◽  
Vol 30 (1) ◽  
pp. 19-40
Author(s):  
Katsuhiko Kuribayashi ◽  
Masaaki Yokotani
Keyword(s):  

10.1142/0524 ◽  
1987 ◽  
Author(s):  
P Seibt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document