scholarly journals Topological K-theory of complex noncommutative spaces

2015 ◽  
Vol 152 (3) ◽  
pp. 489-555 ◽  
Author(s):  
Anthony Blanc

The purpose of this work is to give a definition of a topological K-theory for dg-categories over$\mathbb{C}$and to prove that the Chern character map from algebraic K-theory to periodic cyclic homology descends naturally to this new invariant. This topological Chern map provides a natural candidate for the existence of a rational structure on the periodic cyclic homology of a smooth proper dg-algebra, within the theory of noncommutative Hodge structures. The definition of topological K-theory consists in two steps: taking the topological realization of algebraic K-theory and inverting the Bott element. The topological realization is the left Kan extension of the functor ‘space of complex points’ to all simplicial presheaves over complex algebraic varieties. Our first main result states that the topological K-theory of the unit dg-category is the spectrum$\mathbf{BU}$. For this we are led to prove a homotopical generalization of Deligne’s cohomological proper descent, using Lurie’s proper descent. The fact that the Chern character descends to topological K-theory is established by using Kassel’s Künneth formula for periodic cyclic homology and the proper descent. In the case of a dg-category of perfect complexes on a separated scheme of finite type, we show that we recover the usual topological K-theory of complex points. We show as well that the Chern map tensorized with$\mathbb{C}$is an equivalence in the case of a finite-dimensional associative algebra – providing a formula for the periodic homology groups in terms of the stack of finite-dimensional modules.

Author(s):  
Moulay-Tahar Benameur ◽  
Alan L. Carey

AbstractFor a single Dirac operator on a closed manifold the cocycle introduced by Jaffe-Lesniewski-Osterwalder [19] (abbreviated here to JLO), is a representative of Connes' Chern character map from the K-theory of the algebra of smooth functions on the manifold to its entire cyclic cohomology. Given a smooth fibration of closed manifolds and a family of generalized Dirac operators along the fibers, we define in this paper an associated bivariant JLO cocycle. We then prove that, for any l ≥ 0, our bivariant JLO cocycle is entire when we endow smoooth functions on the total manifold with the Cl+1 topology and functions on the base manifold with the Cl topology. As a by-product of our theorem, we deduce that the bivariant JLO cocycle is entire for the Fréchet smooth topologies. We then prove that our JLO bivariant cocycle computes the Chern character of the Dai-Zhang higher spectral flow.


2006 ◽  
Vol 207 (2) ◽  
pp. 455-483 ◽  
Author(s):  
Jean-Louis Tu ◽  
Ping Xu
Keyword(s):  

K-Theory ◽  
1996 ◽  
Vol 10 (2) ◽  
pp. 197-214 ◽  
Author(s):  
Ioannis Emmanouil

Author(s):  
E. Getzler ◽  
J.D.S. Jones ◽  
S.B. Petrack

2017 ◽  
Vol 20 (K2) ◽  
pp. 107-116
Author(s):  
Diem Thi Hong Huynh

We show first the definition of variational convergence of unifunctions and their basic variational properties. In the next section, we extend this variational convergence definition in case the functions which are defined on product two sets (bifunctions or bicomponent functions). We present the definition of variational convergence of bifunctions, icluding epi/hypo convergence, minsuplop convergnece and maxinf-lop convergence, defined on metric spaces. Its variational properties are also considered. In this paper, we concern on the properties of epi/hypo convergence to apply these results on optimization proplems in two last sections. Next we move on to the main results that are approximations of typical and important optimization related problems on metric space in terms of the types of variational convergence are equilibrium problems, and multiobjective optimization. When we applied to the finite dimensional case, some of our results improve known one.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


2018 ◽  
Vol 2018 (736) ◽  
pp. 95-139 ◽  
Author(s):  
Matthew Morrow

AbstractThe purpose of this paper is to study pro excision in algebraicK-theory and cyclic homology, after Suslin–Wodzicki, Cuntz–Quillen, Cortiñas, and Geisser–Hesselholt, as well as continuity properties of André–Quillen and Hochschild homology. A key tool is first to establish the equivalence of various pro Tor vanishing conditions which appear in the literature.This allows us to prove that all ideals of commutative, Noetherian rings are pro unital in a suitable sense. We show moreover that such pro unital ideals satisfy pro excision in derived Hochschild and cyclic homology. It follows hence, and from the Suslin–Wodzicki criterion, that ideals of commutative, Noetherian rings satisfy pro excision in derived Hochschild and cyclic homology, and in algebraicK-theory.In addition, our techniques yield a strong form of the pro Hochschild–Kostant–Rosenberg theorem; an extension to general base rings of the Cuntz–Quillen excision theorem in periodic cyclic homology; a generalisation of the Feĭgin–Tsygan theorem; a short proof of pro excision in topological Hochschild and cyclic homology; and new Artin–Rees and continuity statements in André–Quillen and Hochschild homology.


Sign in / Sign up

Export Citation Format

Share Document