Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora

1982 ◽  
Vol 149 (2) ◽  
pp. 179-193 ◽  
Author(s):  
R. Hengstenberg
2017 ◽  
Vol 117 (2) ◽  
pp. 566-581 ◽  
Author(s):  
James C. Dooley ◽  
Michaela S. Donaldson ◽  
Leah A. Krubitzer

The functional organization of the primary visual area (V1) and the importance of sensory experience in its normal development have been well documented in eutherian mammals. However, very few studies have investigated the response properties of V1 neurons in another large class of mammals, or whether sensory experience plays a role in shaping their response properties. Thus we reared opossums ( Monodelphis domestica) in normal and vertically striped cages until they reached adulthood. They were then anesthetized using urethane, and electrophysiological techniques were used to examine neuronal responses to different orientations, spatial and temporal frequencies, and contrast levels. For normal opossums, we observed responses to the temporal and spatial characteristics of the stimulus to be similar to those described in small, nocturnal, eutherian mammals such as rats and mice; neurons in V1 responded maximally to stimuli at 0.09 cycles per degree and 2.12 cycles per second. Unlike other eutherians, but similar to other marsupials investigated, only 40% of the neurons were orientation selective. In stripe-reared animals, neurons were significantly more likely to respond to vertical stimuli at a wider range of spatial frequencies, and were more sensitive to gratings at lower contrast values compared with normal animals. These results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.NEW & NOTEWORTHY These results are the first description of visual response properties of the most commonly studied marsupial model organism, the short-tailed opossum ( Monodelphis domestica). Further, these results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.


1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


2020 ◽  
Vol 124 (2) ◽  
pp. 432-442
Author(s):  
Allison J. Murphy ◽  
J. Michael Hasse ◽  
Farran Briggs

Interest in visual system homologies across species has recently increased. Across species, retinas contain diverse retinal ganglion cells including cells with unusual visual response properties. It is unclear whether rare retinal ganglion cells in carnivores project to and drive similarly unique visual responses in the visual thalamus. We discovered a rare subpopulation of thalamic neurons defined by unique spike shape and visual response properties, suggesting that nonstandard visual computations are common to many species.


Neuroscience ◽  
1982 ◽  
Vol 7 (10) ◽  
pp. 2427-2440 ◽  
Author(s):  
P. Sajovic ◽  
C. Levinthal

2019 ◽  
Author(s):  
Kyle R. Jenks ◽  
Jason D. Shepherd

ABSTRACTThe normal development of neuronal circuits requires both hard-wired gene expression and experience. Sensory processing, such as vision, is especially sensitive to perturbations in experience. However, the exact contribution of experience to neuronal visual response properties and binocular vision remains unknown. To determine how visual response properties developin vivo, we used single cell resolution two-photon calcium imaging of mouse binocular visual cortex at multiple time-points after eye opening. Few neurons are binocularly responsive immediately after eye opening and respond solely to either the contralateral or ipsilateral eye. Binocular neurons emerge during development, which requires visual experience, and show specific tuning of visual response properties. As binocular neurons emerge, activity between the two eyes becomes more correlated in the neuropil. Since experience-dependent plasticity requires the expression of activity-dependent genes, we determined whether the plasticity geneArcmediates the development of normal visual response properties. Surprisingly, rather than mirroring the effects of visual deprivation, mice that lackArcshow increased numbers of binocular neurons during development. Strikingly, removingArcin adult binocular visual cortex increases the numbers of binocular neurons and recapitulates the developmental phenotype, suggesting cortical circuits that mediate visual processing require ongoing experience-dependent plasticity. Thus, experience is critical for the normal development and maintenance of circuits required to process binocular vision.


2018 ◽  
Vol 18 (10) ◽  
pp. 30
Author(s):  
Brittany Bushnell ◽  
Najib Majaj ◽  
J Anthony Movshon ◽  
Lynne Kiorpes

Sign in / Sign up

Export Citation Format

Share Document