monodelphis domestica
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 45)

H-INDEX

38
(FIVE YEARS 2)

Author(s):  
Xiao Xiong ◽  
Paul B Samollow ◽  
Wenqi Cao ◽  
Richard Metz ◽  
Chao Zhang ◽  
...  

Abstract The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs. ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction-site associated DNA sequencing (ddRAD-seq) and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for M. domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.


2021 ◽  
Author(s):  
Steve Horvath ◽  
Amin Haghani ◽  
Joseph Alan Zoller ◽  
Ken Raj ◽  
Ishani Sinha ◽  
...  

The opossum (Monodelphis domestica), with its sequenced genome, ease of laboratory care and experimental manipulation, and unique biology, is the most used laboratory marsupial. Using the mammalian methylation array, we generated DNA methylation data from n=100 opossum tissues including blood, liver, and tail. We contrast age-related changes in the opossum methylome to those of C57BL/6J mice. We present several epigenetic clocks for opossums that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (opossum and human). Two dual-species human-opossum pan-tissue clocks accurately measure chronological age and relative age, respectively. These human-opossum epigenetic clocks are expected to provide a significant boost to the attractiveness of opossum as a biological model.


2021 ◽  
Author(s):  
Xiao Xiong ◽  
Paul B. Samollow ◽  
Wenqi Cao ◽  
Richard Metz ◽  
Chao Zhang ◽  
...  

The gray short-tailed opossum is an established laboratory-bred marsupial model for biomedical research. It serves as a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs. ancestral states of genomic/epigenomic characteristics for all eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction-site associated DNA sequencing (ddRAD-seq) and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for M. domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.


2021 ◽  
Author(s):  
Hiroshi Kiyonari ◽  
Mari Kaneko ◽  
Takaya Abe ◽  
Aki Shiraishi ◽  
Riko Yoshimi ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 100421
Author(s):  
Mackenzie Englund ◽  
Samaan Faridjoo ◽  
Christopher S. Iyer ◽  
Leah Krubitzer

2021 ◽  
Vol 224 (9) ◽  
Author(s):  
Deepa L. Ramamurthy ◽  
Heather K. Dodson ◽  
Leah A. Krubitzer

ABSTRACT Behavioral strategies that depend on sensory information are not immutable; rather they can be shaped by the specific sensory context in which animals develop. This behavioral plasticity depends on the remarkable capacity of the brain to reorganize in response to alterations in the sensory environment, particularly when changes in sensory input occur at an early age. To study this phenomenon, we utilize the short-tailed opossum, a marsupial that has been a valuable animal model to study developmental plasticity due to the extremely immature state of its nervous system at birth. Previous studies in opossums have demonstrated that removal of retinal inputs early in development results in profound alterations to cortical connectivity and functional organization of visual and somatosensory cortex; however, behavioral consequences of this plasticity are not well understood. We trained early blind and sighted control opossums to perform a two-alternative forced choice texture discrimination task. Whisker trimming caused an acute deficit in discrimination accuracy for both groups, indicating the use of a primarily whisker-based strategy to guide choices based on tactile cues. Mystacial whiskers were important for performance in both groups; however, genal whiskers only contributed to behavioral performance in early blind animals. Early blind opossums significantly outperformed their sighted counterparts in discrimination accuracy, with discrimination thresholds that were lower by ∼75 μm. Our results support behavioral compensation following early blindness using tactile inputs, especially the whisker system.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1047
Author(s):  
Jae Yeon Hwang ◽  
Jamie Maziarz ◽  
Günter P. Wagner ◽  
Jean-Ju Chung

Males have evolved species-specifical sperm morphology and swimming patterns to adapt to different fertilization environments. In eutherians, only a small fraction of the sperm overcome the diverse obstacles in the female reproductive tract and successfully migrate to the fertilizing site. Sperm arriving at the fertilizing site show hyperactivated motility, a unique motility pattern displaying asymmetric beating of sperm flagella with increased amplitude. This motility change is triggered by Ca2+ influx through the sperm-specific ion channel, CatSper. However, the current understanding of the CatSper function and its molecular regulation is limited in eutherians. Here, we report molecular evolution and conservation of the CatSper channel in the genome throughout eutherians and marsupials. Sequence analyses reveal that CatSper proteins are slowly evolved in marsupials. Using an American marsupial, gray short-tailed opossum (Monodelphis domestica), we demonstrate the expression of CatSper in testes and its function in hyperactivation and unpairing of sperm. We demonstrate that a conserved IQ-like motif in CatSperζ is required for CatSperζ interaction with the pH-tuned Ca2+ sensor, EFCAB9, for regulating CatSper activity. Recombinant opossum EFCAB9 can interact with mouse CatSperζ despite high sequence divergence of CatSperζ among CatSper subunits in therians. Our finding suggests that molecular characteristics and functions of CatSper are evolutionarily conserved in gray short-tailed opossum, unraveling the significance of sperm hyperactivation and fertilization in marsupials for the first time.


Sign in / Sign up

Export Citation Format

Share Document