scholarly journals Experience-dependent development and maintenance of binocular neurons in the mouse visual cortex

2019 ◽  
Author(s):  
Kyle R. Jenks ◽  
Jason D. Shepherd

ABSTRACTThe normal development of neuronal circuits requires both hard-wired gene expression and experience. Sensory processing, such as vision, is especially sensitive to perturbations in experience. However, the exact contribution of experience to neuronal visual response properties and binocular vision remains unknown. To determine how visual response properties developin vivo, we used single cell resolution two-photon calcium imaging of mouse binocular visual cortex at multiple time-points after eye opening. Few neurons are binocularly responsive immediately after eye opening and respond solely to either the contralateral or ipsilateral eye. Binocular neurons emerge during development, which requires visual experience, and show specific tuning of visual response properties. As binocular neurons emerge, activity between the two eyes becomes more correlated in the neuropil. Since experience-dependent plasticity requires the expression of activity-dependent genes, we determined whether the plasticity geneArcmediates the development of normal visual response properties. Surprisingly, rather than mirroring the effects of visual deprivation, mice that lackArcshow increased numbers of binocular neurons during development. Strikingly, removingArcin adult binocular visual cortex increases the numbers of binocular neurons and recapitulates the developmental phenotype, suggesting cortical circuits that mediate visual processing require ongoing experience-dependent plasticity. Thus, experience is critical for the normal development and maintenance of circuits required to process binocular vision.

2017 ◽  
Vol 117 (2) ◽  
pp. 566-581 ◽  
Author(s):  
James C. Dooley ◽  
Michaela S. Donaldson ◽  
Leah A. Krubitzer

The functional organization of the primary visual area (V1) and the importance of sensory experience in its normal development have been well documented in eutherian mammals. However, very few studies have investigated the response properties of V1 neurons in another large class of mammals, or whether sensory experience plays a role in shaping their response properties. Thus we reared opossums ( Monodelphis domestica) in normal and vertically striped cages until they reached adulthood. They were then anesthetized using urethane, and electrophysiological techniques were used to examine neuronal responses to different orientations, spatial and temporal frequencies, and contrast levels. For normal opossums, we observed responses to the temporal and spatial characteristics of the stimulus to be similar to those described in small, nocturnal, eutherian mammals such as rats and mice; neurons in V1 responded maximally to stimuli at 0.09 cycles per degree and 2.12 cycles per second. Unlike other eutherians, but similar to other marsupials investigated, only 40% of the neurons were orientation selective. In stripe-reared animals, neurons were significantly more likely to respond to vertical stimuli at a wider range of spatial frequencies, and were more sensitive to gratings at lower contrast values compared with normal animals. These results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.NEW & NOTEWORTHY These results are the first description of visual response properties of the most commonly studied marsupial model organism, the short-tailed opossum ( Monodelphis domestica). Further, these results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.


2011 ◽  
Vol 105 (1) ◽  
pp. 347-355 ◽  
Author(s):  
Giao B. Hang ◽  
Yang Dan

Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.


2008 ◽  
Vol 28 (39) ◽  
pp. 9817-9827 ◽  
Author(s):  
G. T. Prusky ◽  
B. D. Silver ◽  
W. W. Tschetter ◽  
N. M. Alam ◽  
R. M. Douglas

2003 ◽  
Vol 90 (2) ◽  
pp. 876-886 ◽  
Author(s):  
Nobuya Sato ◽  
Katsuki Nakamura

We examined visual response properties of single neurons in the parahippocampal (PH) cortex of alert monkeys using various visual stimuli (bars, geometrical shapes such as a circle, and images such as a human face) while the monkey fixated a spot for a juice reward. Of the investigated PH neurons 104 of 359 (29%) were found to be visually responsive. The investigation was focused on spatial and object aspects of visual processing. We investigated a visual receptive field (RF) property and a direction selectivity for a moving bar with respect to spatial processing. For half of these PH neurons (53%), the optimal stimulus position, where a visual stimulus elicited the maximal response, located peripherally, that is, with an eccentricity of more than 10 deg. More than 20% of these PH neurons had an RF that does not include the center of gaze. There were neurons in the PH cortex that appeared to convey motion signals. In addition, some PH neurons showed eye-position–dependent activity. With respect to object processing, we investigated selectivities for images, geographical shapes, orientations of a bar, and colors. For comparison purposes, we also examined responses of perirhinal (PR) neurons. PH neurons showed selective responses to these stimuli, but PR neurons were found to be more selective for images than PH neurons. These results suggest that the PH cortex is involved in both spatial and object processing, but less involved than the PR cortex in processing of complex images.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marina E Wosniack ◽  
Jan H Kirchner ◽  
Ling-Ya Chao ◽  
Nawal Zabouri ◽  
Christian Lohmann ◽  
...  

Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity and topography, while global events homeostatically regulate connection strength. However, to generate robust selectivity, we found that global events should adapt their amplitude to the history of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.


2020 ◽  
Author(s):  
Kenta M Hagihara ◽  
Ayako Wendy Ishikawa ◽  
Yumiko Yoshimura ◽  
Yoshiaki Tagawa ◽  
Kenichi Ohki

Abstract Integration of information processed separately in distributed brain regions is essential for brain functions. This integration is enabled by long-range projection neurons, and further, concerted interactions between long-range projections and local microcircuits are crucial. It is not well known, however, how this interaction is implemented in cortical circuits. Here, to decipher this logic, using callosal projection neurons (CPNs) in layer 2/3 of the mouse visual cortex as a model of long-range projections, we found that CPNs exhibited distinct response properties and fine-scale local connectivity patterns. In vivo 2-photon calcium imaging revealed that CPNs showed a higher ipsilateral (to their somata) eye preference, and that CPN pairs showed stronger signal/noise correlation than random pairs. Slice recordings showed CPNs were preferentially connected to CPNs, demonstrating the existence of projection target-dependent fine-scale subnetworks. Collectively, our results suggest that long-range projection target predicts response properties and local connectivity of cortical projection neurons.


2020 ◽  
Author(s):  
Marina E. Wosniack ◽  
Jan H. Kirchner ◽  
Ling-Ya Chao ◽  
Nawal Zabouri ◽  
Christian Lohmann ◽  
...  

Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina, and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We found that local events shape cortical input selectivity and topography, while global events have a homeostatic role regulating connection strength. To generate robust selectivity, we predicted that global events should adapt their amplitude to the history of preceding cortical activation, and confirmed by analyzing in vivo spontaneous cortical activity. This adaptation led to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.


Sign in / Sign up

Export Citation Format

Share Document