Calculation of vacancy-formation energy of alkali metals using an electron-density functional

1979 ◽  
Vol 22 (2) ◽  
pp. 205-207
Author(s):  
V. M. Kuznetsov ◽  
Yu. A. Khon ◽  
S. A. Beznosyuk ◽  
V. P. Fadin
2014 ◽  
Vol 887-888 ◽  
pp. 966-969 ◽  
Author(s):  
Shi Yang Sun ◽  
Ping Ping Xu ◽  
Xue Jie Liu ◽  
Xin Tan

The ab inttio density functional theory had been used to calculate the vacancy formation energy of C in the vanadium carbide, to reveal the effects of super-cell size and parameters k points. It turned out that,the calculation model of C vacancy formation energy in VC should be contain 64 atoms, while the K grid meshed 5x5x5 above using the Monkhorst-Pack method. And due to the vacancy formation energy of C 6.76eV, the high vacancy concentration of VC could be caused by simple thermal vibration. These researches not only had a certain value to know VC properties, but also had great significance to rediscover the forming of vacancy.


2018 ◽  
Author(s):  
V. P. Saleel Ahammad Saleel ◽  
R. D. Eithiraj

2021 ◽  
Vol 880 ◽  
pp. 43-48
Author(s):  
Yuri N. Starodubtsev ◽  
V.S. Tsepelev

We investigated the relationship of the vacancy formation energy with kinematic viscosity and self-diffusion coefficient in liquid metals at the melting temperature. Formulas are obtained that relate experimental values of the vacancy formation energy, kinematic viscosity, and self-diffusion coefficient to the atomic size and mass, the melting and Debye temperatures. The viscosity and self-diffusion parameters are introduced. The ratio of these parameters to vacancy formation energy is equal to dimensionless constants. It is shown that the formulas for viscosity and self-diffusion differ only in dimensionless constants; the values of these constants are calculated. Linear regression analysis was carried out and formulas with the highest adjusted coefficient of determination were identified. The calculated values of the self-diffusion coefficient for a large number of liquid metals are presented.


2020 ◽  
Vol 124 (19) ◽  
pp. 10509-10522 ◽  
Author(s):  
Yoyo Hinuma ◽  
Takashi Kamachi ◽  
Nobutsugu Hamamoto ◽  
Motoshi Takao ◽  
Takashi Toyao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document