Optimal control of systems governed by a class of nonlinear evolution equations in a reflexive Banach space

1978 ◽  
Vol 25 (1) ◽  
pp. 57-81 ◽  
Author(s):  
N. U. Ahmed ◽  
K. L. Teo
2020 ◽  
Vol 20 (1) ◽  
pp. 89-108 ◽  
Author(s):  
André Eikmeier ◽  
Etienne Emmrich ◽  
Hans-Christian Kreusler

AbstractThe initial value problem for an evolution equation of type {v^{\prime}+Av+BKv=f} is studied, where {A:V_{A}\to V_{A}^{\prime}} is a monotone, coercive operator and where {B:V_{B}\to V_{B}^{\prime}} induces an inner product. The Banach space {V_{A}} is not required to be embedded in {V_{B}} or vice versa. The operator K incorporates a Volterra integral operator in time of convolution type with an exponentially decaying kernel. Existence of a global-in-time solution is shown by proving convergence of a suitable time discretisation. Moreover, uniqueness as well as stability results are proved. Appropriate integration-by-parts formulae are a key ingredient for the analysis.


1993 ◽  
Vol 6 (2) ◽  
pp. 123-135 ◽  
Author(s):  
N. U. Ahmed ◽  
Sebti Kerbal

In this paper we study the optimal control of systems governed by second order nonlinear evolution equations. We establish the existence of optimal solutions for Lagrange problem.


Sign in / Sign up

Export Citation Format

Share Document