Planar pursuit-evasion with variable speeds, part 1, extremal trajectory maps

1981 ◽  
Vol 33 (3) ◽  
pp. 401-418 ◽  
Author(s):  
U. R. Prasad ◽  
N. Rajan ◽  
N. J. Rao
2020 ◽  
Vol 53 (2) ◽  
pp. 14882-14887
Author(s):  
Yuan Chai ◽  
Jianjun Luo ◽  
Mingming Wang ◽  
Min Yu

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiao Liang ◽  
Honglun Wang ◽  
Haitao Luo

The UAV/UGV heterogeneous system combines the air superiority of UAV (unmanned aerial vehicle) and the ground superiority of UGV (unmanned ground vehicle). The system can complete a series of complex tasks and one of them is pursuit-evasion decision, so a collaborative strategy of UAV/UGV heterogeneous system is proposed to derive a pursuit-evasion game in complex three-dimensional (3D) polygonal environment, which is large enough but with boundary. Firstly, the system and task hypothesis are introduced. Then, an improved boundary value problem (BVP) is used to unify the terrain data of decision and path planning. Under the condition that the evader knows the position of collaborative pursuers at any time but pursuers just have a line-of-sight view, a worst case is analyzed and the strategy between the evader and pursuers is studied. According to the state of evader, the strategy of collaborative pursuers is discussed in three situations: evader is in the visual field of pursuers, evader just disappears from the visual field of pursuers, and the position of evader is completely unknown to pursuers. The simulation results show that the strategy does not guarantee that the pursuers will win the game in complex 3D polygonal environment, but it is optimal in the worst case.


Sign in / Sign up

Export Citation Format

Share Document