Globally convergent algorithm for nonlinearly constrained optimization problems

1987 ◽  
Vol 52 (2) ◽  
pp. 291-309 ◽  
Author(s):  
M. Sahba
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.


Acta Numerica ◽  
1995 ◽  
Vol 4 ◽  
pp. 1-51 ◽  
Author(s):  
Paul T. Boggs ◽  
Jon W. Tolle

Since its popularization in the late 1970s, Sequential Quadratic Programming (SQP) has arguably become the most successful method for solving nonlinearly constrained optimization problems. As with most optimization methods, SQP is not a single algorithm, but rather a conceptual method from which numerous specific algorithms have evolved. Backed by a solid theoretical and computational foundation, both commercial and public-domain SQP algorithms have been developed and used to solve a remarkably large set of important practical problems. Recently large-scale versions have been devised and tested with promising results.


Sign in / Sign up

Export Citation Format

Share Document