scholarly journals A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.

2014 ◽  
Vol 26 (5) ◽  
pp. 566-572 ◽  
Author(s):  
Ailan Liu ◽  
◽  
Dingguo Pu ◽  
◽  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/04.jpg"" width=""300"" />Algorithm flow chart</div> We propose a nonmonotone QP-free infeasible method for inequality-constrained nonlinear optimization problems based on a 3-1 piecewise linear NCP function. This nonmonotone QP-free infeasible method is iterative and is based on nonsmooth reformulation of KKT first-order optimality conditions. It does not use a penalty function or a filter in nonmonotone line searches. This algorithm solves only two systems of linear equations with the same nonsingular coefficient matrix, and is implementable and globally convergent without a linear independence constraint qualification or a strict complementarity condition. Preliminary numerical results are presented. </span>


2015 ◽  
Vol 8 (3) ◽  
pp. 313-335 ◽  
Author(s):  
Jianling Li ◽  
Jian Lv ◽  
Jinbao Jian

AbstractIn this paper, a primal-dual interior point method is proposed for general constrained optimization, which incorporated a penalty function and a kind of new identification technique of the active set. At each iteration, the proposed algorithm only needs to solve two or three reduced systems of linear equations with the same coefficient matrix. The size of systems of linear equations can be decreased due to the introduction of the working set, which is an estimate of the active set. The penalty parameter is automatically updated and the uniformly positive definiteness condition on the Hessian approximation of the Lagrangian is relaxed. The proposed algorithm possesses global and superlinear convergence under some mild conditions. Finally, some preliminary numerical results are reported.


Sign in / Sign up

Export Citation Format

Share Document