On the hydrodynamic limit of a one-dimensional Ginzburg-Landau lattice model. Thea priori bounds

1987 ◽  
Vol 47 (3-4) ◽  
pp. 551-572 ◽  
Author(s):  
J. Fritz
2018 ◽  
Vol 145 ◽  
pp. 01009 ◽  
Author(s):  
Vassil M. Vassilev ◽  
Daniel M. Dantchev ◽  
Peter A. Djondjorov

In this article we consider a critical thermodynamic system with the shape of a thin film confined between two parallel planes. It is assumed that the state of the system at a given temperature and external ordering field is described by order-parameter profiles, which minimize the one-dimensional counterpart of the standard ϕ4 Ginzburg–Landau Hamiltonian and meet the so-called Neumann – Neumann boundary conditions. We give analytic representation of the extremals of this variational problem in terms ofWeierstrass elliptic functions. Then, depending on the temperature and ordering field we determine the minimizers and obtain the phase diagram in the temperature-field plane.


1984 ◽  
pp. 503-506
Author(s):  
V. Benza ◽  
E. Montaldi ◽  
M. Ciftan

1999 ◽  
Vol 10 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Q. DU ◽  
J. REMSKI

When a thin layer of normal (non-superconducting) material is placed between layers of superconducting material, a superconducting-normal-superconducting junction is formed. This paper considers a model for the junction based on the Ginzburg–Landau equations as the thickness of the normal layer tends to zero. The model is first derived formally by averaging the unknown variables in the normal layer. Rigorous convergence is then established, as well as an estimate for the order of convergence. Numerical results are shown for one-dimensional junctions.


1992 ◽  
Vol 57 (3-4) ◽  
pp. 241-248 ◽  
Author(s):  
B.I. Shraiman ◽  
A. Pumir ◽  
W. van Saarloos ◽  
P.C. Hohenberg ◽  
H. Chaté ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document