An estimate of the maximum of the modulus of generalized solutions of the Dirichlet problem for elliptic equations of divergent form

1995 ◽  
Vol 47 (5) ◽  
pp. 733-748 ◽  
Author(s):  
I. M. Kolodii
2021 ◽  
Vol 21 (2) ◽  
pp. 261-280
Author(s):  
Marie-Françoise Bidaut-Véron ◽  
Marta Garcia-Huidobro ◽  
Laurent Véron

Abstract In the present paper, we study the existence of nonnegative solutions to the Dirichlet problem ℒ p , q M ⁢ u := - Δ ⁢ u + u p - M ⁢ | ∇ ⁡ u | q = μ {{\mathcal{L}}^{{M}}_{p,q}u:=-\Delta u+u^{p}-M|\nabla u|^{q}=\mu} in a domain Ω ⊂ ℝ N {\Omega\subset\mathbb{R}^{N}} where μ is a nonnegative Radon measure, when p > 1 {p>1} , q > 1 {q>1} and M ≥ 0 {M\geq 0} . We also give conditions under which nonnegative solutions of ℒ p , q M ⁢ u = 0 {{\mathcal{L}}^{{M}}_{p,q}u=0} in Ω ∖ K {\Omega\setminus K} , where K is a compact subset of Ω, can be extended as a solution of the same equation in Ω.


Sign in / Sign up

Export Citation Format

Share Document