perforated domain
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 1-38
Author(s):  
Chigoziem Emereuwa ◽  
Mogtaba Mohammed

In this paper, we present new homogenization results of a stochastic model for flow of a single-phase fluid through a partially fissured porous medium. The model is a double-porosity model with two flow fields, one associated with the system of fissures and the other associated with the porous system. This model is mathematically described by a system of nonlinear stochastic partial differential equations defined on perforated domain. The main tools to derive the homogenized stochastic model are the Nguetseng’s two-scale convergence, tightness of constructed probability measures, Prokhorov and Skorokhod compactness process and Minty’s monotonicity method.


Author(s):  
Matteo Dalla Riva ◽  
Riccardo Molinarolo ◽  
Paolo Musolino

In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism $\phi$ . First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter $\phi$ .


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 75
Author(s):  
Valentin Alekseev ◽  
Maria Vasilyeva ◽  
Uygulaana Kalachikova ◽  
Eric T. Chung

Problems in perforated media are complex and require high resolution grid construction to capture complex irregular perforation boundaries leading to the large discrete system of equations. In this paper, we develop a multiscale model reduction technique based on the Discontinuous Galerkin Generalized Multiscale Finite Element Method (DG-GMsFEM) for problems in perforated domains with non-homogeneous boundary conditions on perforations. This method implies division of the perforated domain into several non-overlapping subdomains constructing local multiscale basis functions for each. We use two types of multiscale basis functions, which are constructed by imposing suitable non-homogeneous boundary conditions on subdomain boundary and perforation boundary. The construction of these basis functions contains two steps: (1) snapshot space construction and (2) solution of local spectral problems for dimension reduction in the snapshot space. The presented method is used to solve different model problems: elliptic, parabolic, elastic, and thermoelastic equations with non-homogeneous boundary conditions on perforations. The concepts for coarse grid construction and definition of the local domains are presented and investigated numerically. Numerical results for two test cases with homogeneous and non-homogeneous boundary conditions are included, as well. For the case with homogeneous boundary conditions on perforations, results are shown using only local basis functions with non-homogeneous boundary condition on subdomain boundary and homogeneous boundary condition on perforation boundary. Both types of basis functions are needed in order to obtain accurate solutions, and they are shown for problems with non-homogeneous boundary conditions on perforations. The numerical results show that the proposed method provides good results with a significant reduction of the system size.


2021 ◽  
Vol 15 ◽  
pp. 158
Author(s):  
P.I. Kogut ◽  
T.N. Rudyanova

We study boundary properties of one class of periodic functions as $\varepsilon \rightarrow 0$, where $\varepsilon$ is a period of periodically perforated domain. We show that their weak limit is the homothetic mean value of such functions.


Author(s):  
Hamid Haddadou

AbstractIn this paper, we aim to study the asymptotic behavior (when $$\varepsilon \;\rightarrow \; 0$$ ε → 0 ) of the solution of a quasilinear problem of the form $$-\mathrm{{div}}\;(A^{\varepsilon }(\cdot ,u^{\varepsilon }) \nabla u^{\varepsilon })=f$$ - div ( A ε ( · , u ε ) ∇ u ε ) = f given in a perforated domain $$\Omega \backslash T_{\varepsilon }$$ Ω \ T ε with a Neumann boundary condition on the holes $$T_{\varepsilon }$$ T ε and a Dirichlet boundary condition on $$\partial \Omega $$ ∂ Ω . We show that, if the holes are admissible in certain sense (without any periodicity condition) and if the family of matrices $$(x,d)\mapsto A^{\varepsilon }(x,d)$$ ( x , d ) ↦ A ε ( x , d ) is uniformly coercive, uniformly bounded and uniformly equicontinuous in the real variable d, the homogenization of the problem considered can be done in two steps. First, we fix the variable d and we homogenize the linear problem associated to $$A^{\varepsilon }(\cdot ,d)$$ A ε ( · , d ) in the perforated domain. Once the $$H^{0}$$ H 0 -limit $$A^{0}(\cdot ,d)$$ A 0 ( · , d ) of the pair $$(A^{\varepsilon },T^{\varepsilon })$$ ( A ε , T ε ) is determined, in the second step, we deduce that the solution $$u^{\varepsilon }$$ u ε converges in some sense to the unique solution $$u^{0}$$ u 0 in $$H^{1}_{0}(\Omega )$$ H 0 1 ( Ω ) of the quasilinear equation $$-\mathrm{{div}}\;(A^{0}(\cdot ,u^{0})\nabla u )=\chi ^{0}f$$ - div ( A 0 ( · , u 0 ) ∇ u ) = χ 0 f (where $$ \chi ^{0}$$ χ 0 is $$L^{\infty }$$ L ∞ weak $$^{\star }$$ ⋆ limit of the characteristic function of the perforated domain). We complete our study by giving two applications, one to the classical periodic case and the second one to a non-periodic one.


2021 ◽  
pp. 1-27
Author(s):  
Xavier Blanc ◽  
Sylvain Wolf

We study the Poisson equation in a perforated domain with homogeneous Dirichlet boundary conditions. The size of the perforations is denoted by ε > 0, and is proportional to the distance between neighbouring perforations. In the periodic case, the homogenized problem (obtained in the limit ε → 0) is well understood (see (Rocky Mountain J. Math. 10 (1980) 125–140)). We extend these results to a non-periodic case which is defined as a localized deformation of the periodic setting. We propose geometric assumptions that make precise this setting, and we prove results which extend those of the periodic case: existence of a corrector, convergence to the homogenized problem, and two-scale expansion.


Author(s):  
Alexandre Girouard ◽  
Antoine Henrot ◽  
Jean Lagacé

AbstractWe study a new link between the Steklov and Neumann eigenvalues of domains in Euclidean space. This is obtained through an homogenisation limit of the Steklov problem on a periodically perforated domain, converging to a family of eigenvalue problems with dynamical boundary conditions. For this problem, the spectral parameter appears both in the interior of the domain and on its boundary. This intermediary problem interpolates between Steklov and Neumann eigenvalues of the domain. As a corollary, we recover some isoperimetric type bounds for Neumann eigenvalues from known isoperimetric bounds for Steklov eigenvalues. The interpolation also leads to the construction of planar domains with first perimeter-normalized Stekov eigenvalue that is larger than any previously known example. The proofs are based on a modification of the energy method. It requires quantitative estimates for norms of harmonic functions. An intermediate step in the proof provides a homogenisation result for a transmission problem.


Sign in / Sign up

Export Citation Format

Share Document