radiation conditions
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 73)

H-INDEX

25
(FIVE YEARS 4)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Araceli Barceló-Muñoz ◽  
Marta Barceló-Muñoz ◽  
Alfonso Gago-Calderon

In the last decades, lighting installations in plant tissue culture have generally been renewed or designed based on LED technology. Thanks to this, many different light quality advances are available but, with their massive implementation, the same issue is occurring as in the 1960s with the appearance of the Grolux (Sylvania) fluorescent tubes: there is a lack of a methodological standardization of lighting. This review analyzes the main parameters and variables that must be taken into account in the design of LED-based systems, and how these need to be described and quantified in order to homogenize and standardize the experimental conditions to obtain reproducible and comparable results and conclusions. We have designed an experimental system in which the values of the physical environment and microenvironment conditions and the behavior of plant tissue cultures maintained in cabins illuminated with two lighting designs can be compared. Grolux tubes are compared with a combination of monochromatic LED lamps calibrated to provide a spectral emission, and light irradiance values similar to those generated by the previous discharge lamps, achieving in both cases wide uniformity of radiation conditions on the shelves of the culture cabins. This study can help to understand whether it is possible to use LEDs as one standard lighting source in plant tissue culture without affecting the development of the cultures maintained with the previously regulated protocols in the different laboratories. Finally, the results presented from this caparison indicate how temperature is one of the main factors that is affected by the chosen light source.


2021 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Siyuan Chen ◽  
Lichun Sui ◽  
Liangyun Liu ◽  
Xinjie Liu

Accurate estimation of gross primary productivity (GPP) is necessary to better understand the interaction of global terrestrial ecosystems with climate change and human activities. Light use efficiency (LUE)-based GPP models are widely used for retrieving several GPP products with various temporal and spatial resolutions. However, most LUE-based models assume a clear-sky condition, and the influence of diffuse radiation on GPP estimations has not been well considered. In this paper, a diffuse and direct (DDA) absorbed photosynthetically active radiation (APAR)-based method is proposed for better estimation of half-hourly GPP, which partitions APAR under diffuse and direct radiation conditions. Firstly, energy balance residual (EBR) FAPAR, moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) (MCD15A2H) and clumping index (CI) products, as well as solar radiation records supplied by FLUXNET2015 were used to calculate diffuse and direct APAR at a half-hourly scale. Then, an eddy covariance-LUE (EC-LUE) model and meteorological observations from FLUXNET2015 data sets were used for obtaining corresponding LUE values. A co-variation relationship between LUE and diffuse fraction was observed, and the LUE was higher under more diffuse radiation conditions. Finally, the DDA-based method was tested using the half-hourly FLUXNET GPP and compared with half-hourly GPP calculated using total APAR (GPP_TA). The results indicated that the half-hourly GPP estimated using the DDA-based method (GPP_DDA) was more accurate, giving higher R2 values, lower RMSE and RMSE* values (R2 varied from 0.565 to 0.682, RMSE ranged from 3.219 to 12.405 and RMSE* were within the range of 2.785 to 8.395) than the GPP_TA (R2 varied from 0.558 to 0.653, RMSE ranged from 3.407 to 13.081 and RMSE* were within the range of 3.321 to 9.625) across FLUXNET sites within different vegetation types. This study explored the effects of partitioning the diffuse and direct APAR on half-hourly GPP estimations, which demonstrates a higher agreement with FLUXNET GPP than total APAR-based GPP.


2021 ◽  
Author(s):  
Konstantin Zolnikov ◽  
Svetlana Evdokimova ◽  
A. Yagodkin ◽  
Sergey Grechanyy ◽  
P. Parmon

The article proposes a method for calculating and experimental evaluation of the service life of products in the specified radiation conditions of outer space. The described method of estimating the resource of products takes into account the additive nature of ionization and structural effects in the specified radiation conditions of outer space. This method includes experimental and computa-tional stages.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8258
Author(s):  
Pawel Znaczko ◽  
Kazimierz Kaminski ◽  
Norbert Chamier-Gliszczynski ◽  
Emilian Szczepanski ◽  
Paweł Gołda

This paper focuses on an analysis of selected control methods in solar heating systems. Proportional, ON-OFF, and new proposed IPC control methods were tested. Experimental tests were conducted under natural conditions using the author’s method of clustering measurement days. In the form of thermal energy gains in the storage tanks, the results for all tested control methods are presented. The ON-OFF control method is suitable for low variability of solar radiation conditions but is ineffective under dynamic solar radiation conditions. The proportional controllers collect thermal energy under high variability solar radiation effectively, but they tend to cause thermal drifts from the system under high heat load. The proposed IPC control method prevents the waste of heat energy and makes more efficient use of the high and dynamic solar radiation. In conclusion, energy gains depend more on the level of solar radiation and less on its variability. However, the variability of solar radiation makes control in solar systems more challenging, and it is one of the factors that should determine the control strategy. The novelty of this work is based on an extension of the control algorithm by adding the temperature at the entry and exit of the solar coil. This makes it possible to eliminate thermal drift and observe the intensity of heat transfer to the water in the tank.


2021 ◽  
pp. 30-33
Author(s):  
A.V. Krech ◽  
A.Yu. Boyarintsev ◽  
N.Z. Galunov ◽  
N.L. Karavaeva ◽  
T.E. Gorbacheva ◽  
...  

The article analyzes two main hypotheses describing the cracking of a composite scintillator in the irradiation zone. This is the "temperature" and "radiation-chemical" hypothesis of cracking. The analysis is based on experi-mental data that we obtained by irradiating scintillators and the results of model chemical experiments.


2021 ◽  
pp. 30-33
Author(s):  
A.V. Krech ◽  
A.Yu. Boyarintsev ◽  
N.Z. Galunov ◽  
N.L. Karavaeva ◽  
T.E. Gorbacheva ◽  
...  

The article analyzes two main hypotheses describing the cracking of a composite scintillator in the irradiation zone. This is the "temperature" and "radiation-chemical" hypothesis of cracking. The analysis is based on experi-mental data that we obtained by irradiating scintillators and the results of model chemical experiments.


2021 ◽  
Vol 55 (7) ◽  
pp. 730-733
Author(s):  
N. M. Khamidullina ◽  
T. Sh. Kombaev ◽  
E. V. Vlasenkov ◽  
I. V. Zefirov ◽  
P. S. Chernikov ◽  
...  

2021 ◽  
Vol 16 (12) ◽  
pp. C12030
Author(s):  
M. Borysova

Abstract The LUXE experiment aims at studying high-field QED in electron-laser and photon-laser interactions, with the 16.5 GeV electron beam of the European XFEL and a laser beam with power of up to 350 TW. The experiment will measure the spectra of electrons and photons in non-linear Compton scattering where production rates in excess of 109 are expected per 1 Hz bunch crossing. At the same time positrons from pair creation in either the two-step trident process or the Breit-Wheeler process will be measured, where the expected rates range from 10−3 to 104 per bunch crossing, depending on the laser power and focus. These measurements have to be performed in the presence of low-energy high radiation-background. To meet these challenges, for high-rate electron and photon fluxes, the experiment will use Cherenkov radiation detectors, scintillator screens, sapphire sensors as well as lead-glass monitors for back-scattering off the beam-dump. A four-layer silicon-pixel tracker and a compact sampling electromagnetic calorimeter will be used to measure the positron spectra. The layout of the experiment and the expected performance under the harsh radiation conditions will be presented.


2021 ◽  
Vol 58 ◽  
pp. 94-126
Author(s):  
A.G. Chentsov ◽  
A.A. Chentsov ◽  
A.N. Sesekin

The problem of sequential bypass of megalopolises is investigated, focused on the problem of dismantling a system of radiation hazardous objects under constraints in the form of precedence conditions. The radiation impact on the performers is assessed by the doses received during movements and during the performance of dismantling works. The route problem of minimizing the dose load of workers carrying out dismantling in one or another sequence of operations is considered. The procedure for constructing an optimal solution using a variant of dynamic programming is investigated. On this basis, an algorithm is built, implemented on a PC. Examples of the numerical solution of a model problem for the minimum dose load are given.


Sign in / Sign up

Export Citation Format

Share Document