An algebraic-Q4 turbulent eddy viscosity model: Boundary layer flow over a flat plate and flow in a pipe

1992 ◽  
Vol 7 (3) ◽  
pp. 229-239 ◽  
Author(s):  
Alexander Yakhot ◽  
Omer Kedar ◽  
Steven A. Orszag
1981 ◽  
Vol 103 (1) ◽  
pp. 104-111 ◽  
Author(s):  
J. P. F. Lindhout ◽  
G. Moek ◽  
E. De Boer ◽  
B. Van Den Berg

This paper gives a description of a calculation method for 3D turbulent and laminar boundary layers on nondevelopable surfaces. A simple eddy viscosity model is incorporated in the method. Special attention is given to the organization of the computations to circumvent as much as possible stepsize limitations. The method is also able to proceed the computation around separated flow regions. The method has been applied to the laminar boundary layer flow over a flat plate with attached cylinder, and to a turbulent boundary layer flow over an airplane wing.


Author(s):  
Michele Marconcini ◽  
Roberto Pacciani ◽  
Andrea Arnone

A URANS solver has been applied to study the effects of a synthetic jet actuator on the laminar boundary layer separation over a flat plate with adverse pressure gradient. The pressure distribution over the flat plate is representative of the suction side of a ultra-high-lift, LP-turbine airfoil. Measurements for several Reynolds numbers, are provided via experimental tests carried out in the framework of the European project TATMo (Turbulence and Transition Modelling for Special Turbomachinery Applications). The actuator device, in the form of a two-dimensional slot, has been conceived in order to obtain jet aerodynamic characteristics suitable for separation control. The study has been carried out using a novel, transition-sensitive, non-linear eddy-viscosity model. It is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) to a realizable, quadratic eddy-viscosity model that provides an explicit algebraic formulation for the Reynolds stresses. The analysis covers steady as well as unsteady cases characterized by different actuator frequencies. Comparisons between measurements and computations are presented. The suitability of the proposed approach to simulate the time- and phase-averaged effects of a synthetic jet for boundary layer control at typical operating conditions of high-lift LP-turbine blades will be discussed in detail.


2012 ◽  
Vol 15 (6) ◽  
pp. 585-593
Author(s):  
M. Jana ◽  
S. Das ◽  
S. L. Maji ◽  
Rabindra N. Jana ◽  
S. K. Ghosh

2005 ◽  
Vol 43 (1) ◽  
Author(s):  
Mohd. Zuki Salleh ◽  
Azizah Mohd Rohni ◽  
Norsarahaida Amin

Sign in / Sign up

Export Citation Format

Share Document