turbulence models
Recently Published Documents


TOTAL DOCUMENTS

3199
(FIVE YEARS 671)

H-INDEX

76
(FIVE YEARS 8)

2022 ◽  
Vol 388 ◽  
pp. 111614
Author(s):  
S. Bhushan ◽  
M. Elmellouki ◽  
T. Jamal ◽  
G. Busco ◽  
D.K. Walters ◽  
...  

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 272
Author(s):  
Chenyu Wu ◽  
Haoran Li ◽  
Yufei Zhang ◽  
Haixin Chen

The accuracy of an airfoil stall prediction heavily depends on the computation of the separated shear layer. Capturing the strong non-equilibrium turbulence in the shear layer is crucial for the accuracy of a stall prediction. In this paper, different Reynolds-averaged Navier–Stokes turbulence models are adopted and compared for airfoil stall prediction. The results show that the separated shear layer fixed k−v2¯−ω (abbreviated as SPF k−v2¯−ω) turbulence model captures the non-equilibrium turbulence in the separated shear layer well and gives satisfactory predictions of both thin-airfoil stall and trailing-edge stall. At small Reynolds numbers (Re~105), the relative error between the predicted CL,max of NACA64A010 by the SPF k−v2¯−ω model and the experimental data is less than 3.5%. At high Reynolds numbers (Re~106), the CL,max of NACA64A010 and NACA64A006 predicted by the SPF k−v2¯−ω model also has an error of less than 5.5% relative to the experimental data. The stall of the NACA0012 airfoil, which features trailing-edge stall, is also computed by the SPF k−v2¯−ω model. The SPF k−v2¯−ω model is also applied to a NACA0012 airfoil, which features trailing-edge stall and an error of CL relative to the experiment at CL>1.0 is smaller than 3.5%. The SPF k−v2¯−ω model shows higher accuracy than other turbulence models.


Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 34
Author(s):  
Hechmi Khlifi ◽  
Adnen Bourehla

This work focuses on the performance and validation of compressible turbulence models for the pressure-strain correlation. Considering the Launder Reece and Rodi (LRR) incompressible model for the pressure-strain correlation, Adumitroaie et al., Huang et al., and Marzougui et al., used different modeling approaches to develop turbulence models, taking into account compressibility effects for this term. Two numerical coefficients are dependent on the turbulent Mach number, and all of the remaining coefficients conserve the same values as in the original LRR model. The models do not correctly predict the compressible turbulence at a high-speed shear flow. So, the revision of these models is the major aim of this study. In the present work, the compressible model for the pressure-strain correlation developed by Khlifi−Lili, involving the turbulent Mach number, the gradient, and the convective Mach numbers, is used to modify the linear mean shear strain and the slow terms of the previous models. The models are tested in two compressible turbulent flows: homogeneous shear flow and the newly developed plane mixing layers. The predicted results of the proposed modifications of the Adumitroaie et al., Huang et al., and Marzougui et al., models and of its universal versions are compared with direct numerical simulation (DNS) and experiment data. The results show that the important parameters of compressibility in homogeneous shear flow and in the mixing layers are well predicted by the proposal models.


AIAA Journal ◽  
2022 ◽  
pp. 1-15
Author(s):  
Haoyuan Zhang ◽  
Timothy Craft ◽  
Hector Iacovides

2022 ◽  
Vol 16 (2) ◽  
pp. 29-40
Author(s):  
S. A. Akinin ◽  
A. V. Starov

The results of computational and experimental studies of a model of a hypersonic convergent air intake are presented. Experimental studies were carried out in a hot-shot wind tunnel IT-302M SB RAS at a Mach number M = 5.7 and an angle of attack α = 4 °. Numerical modeling was carried out in a three-dimensional setting in the ANSYS Fluent software package. The calculations were carried out in 4 versions using different turbulence models: k-ɛ standard, RNG k-ɛ, k-ɷ standard and k-ɷ SST. The features of the flow structure are established. The pressure distributions on the compression surfaces and in the air intake channel are obtained. The separated flow at the entrance of the inner channel was studied. It was found that the use of various turbulence models has a significant effect on the size and position of separation. The best agreement between the calculated and experimental data on the level of static pressure was shown by the variant with the k-ɛ standard turbulence model.


2022 ◽  
Author(s):  
Owen J. Williams ◽  
Hariprasad Annamalai ◽  
Thomas A. Ozoroski ◽  
Christopher J. Roy ◽  
Todd Lowe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document