synthetic jet
Recently Published Documents


TOTAL DOCUMENTS

1402
(FIVE YEARS 247)

H-INDEX

46
(FIVE YEARS 5)

Author(s):  
Pushpanjay K. Singh ◽  
M. Renganathan ◽  
Harekrishna Yadav ◽  
Santosh K. Sahu ◽  
Prabhat K. Upadhyay ◽  
...  

Author(s):  
Farzad Bazdidi–Tehrani ◽  
Ali Saadniya ◽  
Soroush Rashidzadeh

Nowadays, synthetic jets have various applications such as cooling enhancement and active flow control. In the present paper, the capability of two turbulence modelling approaches in predicting thermal performance of an impinging synthetic jet is investigated. These two approaches are scale adaptive simulation (SAS) and detached eddy simulation (DES). Comparisons between numerical data and experimental studies reveal that the ability of DES in predicting the asymmetrical trend of heat transfer profiles is better than SAS in almost all the study cases. Although, near the stagnation zone, the performance of SAS is superior. Results show that the effects of parameters such as frequency, cross-flow velocity and suction duty cycle factor are well predicted by both approaches. An increase of cross-flow velocity from 1.81 m/s to 2.26 m/s results in an improvement of [Formula: see text] near the stagnation point by almost 16.3% and 9.2% using DES and SAS, respectively.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 326
Author(s):  
Andrea Palumbo ◽  
Luigi de Luca

The paper presents a joint experimental and numerical characterization of double-orifice synthetic jet actuators for flow control. Hot-wire measurements of the flow field generated by the device into a quiescent air environment were collected. The actuation frequency was systematically varied to obtain the frequency response of the actuator; its coupled resonance frequencies were detected and the velocity amplitude was measured. Direct numerical simulations (DNS) of the flow field generated by the device were subsequently carried out at the actuation frequency maximizing the jet output. The results of a fine-meshed parametric analysis are outlined to discuss the effect of the distance between the orifices: time-averaged flow fields show that an intense jet interaction occurs for small values of the orifice spacing-to-diameter ratio; phase-averaged velocity and turbulent kinetic energy distributions allow to describe the vortex motion and merging. A novel classification of the main regions of dual synthetic jets is proposed, based on the time- and phase-averaged flow behaviour both in the near field, where two distinct jets converge, and in the far field, where an unique jet is detected. The use of three-dimensional DNS also allows to investigate the vortex merging for low values of the jet spacing. The work is intended to provide guidelines for the design of synthetic jet arrays for separation control and impinging configurations.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012025
Author(s):  
A. S. Lebedev ◽  
M. I. Sorokin ◽  
D. M. Markovich

Abstract The development of methods of active separation flow control is of great applied importance for many technical and engineering applications. Understanding the conditions for the flow separation from the surface of a bluff body is essential for the design of aircrafts, cars, hydro and gas turbines, bridges and buildings. Drag, acoustic noise, vibrations and active flow mixing depend drastically on the parameters of the vortex separation process. We investigated the possibility of reducing the longitudinal length of a reverse-flow region using the method of «synthetic jet» active separation flow control. The experiment was carried out on a compact straight-through wind channel with a 1-m long test section of a cross-section of 125x125 mm. The jet was placed at the rear stagnation point of a circular cylinder. The Reynolds number, based on the cylinder diameter and the free-stream velocity, was 5000 and the von Kármán street shedding frequency without the synthetic jet was equal to 64.8 Hz. For the first time, for such a set of parameters, we applied high speed PIV to demonstrate that the injection of the synthetic jet into the cylinder wake region leads to a significant reduction in the longitudinal length of the reverse-flow region.


Author(s):  
Guang Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Zhentao Guo

High-load axial compressor is the mainstream of current compressor design and development. In order to improve the aerodynamic performance of high-load axial compressor, an active flow control method in which a synthetic jet is applied to the endwall is proposed. Taking the transonic axial compressor NASA Rotor 35 as the research object, using a single factor analysis method, the influence of five different excitation positions, three different excitation frequencies, and three different jet peak velocities on the aerodynamic performance of the compressor was studied in turn, and obtained the influence law of the endwall synthetic jet excitation parameters. The results show that all three parameters have important effects on the performance of the compressor. Among the excitation parameters studied in this paper, there is an optimal excitation position of 25% Ca. When excited at this position, the flow margin of the compressor is expanded the most. On the basis of maintaining the optimal excitation position and the maximum jet peak velocity, the calculation results found that the jet frequency has little effect on the compressor’s near stall flow rate, but has a great impact on the total pressure ratio and efficiency. The pressure ratio and efficiency increase with the increase of the excitation frequency. However, there seems to be a threshold of the excitation frequency. Only when the excitation frequency is greater than the threshold can the total pressure ratio and efficiency be higher than the prototype compressor. The jet peak velocity has the smallest impact on the compressor performance. Based on the optimal excitation position and the excitation frequency exceeding the threshold, even if the jet peak velocity is small, the compressor can obtain a higher flow margin, total pressure ratio, and efficiency than the prototype compressor. As the jet peak velocity increases, the performance of compressor can be further improved.


Author(s):  
Brandon Han Hoe Goh ◽  
Cheng Tung Chong ◽  
Hwai Chyuan Ong ◽  
Tine Seljak ◽  
Tomaž Katrašnik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document