Investigation of functional organization of receptive fields in the cat visual cortex

1970 ◽  
Vol 1 (1) ◽  
pp. 70-78
Author(s):  
V. D. Glezer ◽  
V. A. Ivanov ◽  
T. A. Shcherbach
1985 ◽  
Vol 16 (4) ◽  
pp. 401-407
Author(s):  
D. J. Stabinite ◽  
S. V. Alekseenko ◽  
D. J. Kirvelis

2006 ◽  
Vol 95 (4) ◽  
pp. 2602-2616 ◽  
Author(s):  
Jason M. Samonds ◽  
Zhiyi Zhou ◽  
Melanie R. Bernard ◽  
A. B. Bonds

We explored how contour information in primary visual cortex might be embedded in the simultaneous activity of multiple cells recorded with a 100-electrode array. Synchronous activity in cat visual cortex was more selective and predictable in discriminating between drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was found even between cells with wholly different orientation preferences when their receptive fields were circularly aligned, and membership in synchronous groups was orientation and curvature dependent. The existence of synchrony between cocircular cells reinforces its role as a general mechanism for contour integration and shape detection as predicted by association field concepts. Our data suggest that cortical synchrony results from common and synchronous input from earlier visual areas and that it could serve to shape extrastriate response selectivity.


2011 ◽  
Vol 41 (9) ◽  
pp. 951-957
Author(s):  
N. A. Lazareva ◽  
S. A. Kozhukhov ◽  
G. A. Sharaev ◽  
R. V. Novikova ◽  
A. S. Tikhomirov ◽  
...  

1980 ◽  
Vol 37 (4) ◽  
pp. 195-208 ◽  
Author(s):  
V. D. Glezer ◽  
T. A. Tsherbach ◽  
V. E. Gauselman ◽  
V. M. Bondarko

2003 ◽  
Vol 89 (2) ◽  
pp. 1112-1125 ◽  
Author(s):  
Toshiki Tani ◽  
Isao Yokoi ◽  
Minami Ito ◽  
Shigeru Tanaka ◽  
Hidehiko Komatsu

Neuronal activity in the early visual cortex has been extensively studied from the standpoint of contour representation. On the other hand, representation of the interior of a surface surrounded by a contour is much less well understood. Several studies have identified neurons activated by a uniform surface covering their receptive fields, but their distribution within the cortex is not yet known. The aim of the present study was to obtain a better understanding of the distribution of such neurons in the visual cortex. Using optical imaging of intrinsic signals, we found that there are a group of surface-responsive regions located in area 18, along the area 17/18 border, that tend to overlap the singular points of the orientation-preference map. Extracellular recordings confirmed that neurons responsive to uniform plane stimuli are accumulated in these regions. Such neurons also existed outside the surface-responsive regions around the singular points. These results suggest that there exists a functional organization related to the representation of a uniform surface in the early visual cortex.


Receptive fields of simple cells in the cat visual cortex have recently been discussed in relation to the ‘theory of communication' proposed by Gabor (1946). A number of investigators have suggested that the line-weighting functions, as measured orthogonal to the preferred orientation, may be best described as the product of a Gaussian envelope and a sinusoid (i.e. a Gabor function). Following Gabor’s theory of ‘basis’ functions, it has also been suggested that simple cells can be categorized into even-and odd-symmetric categories. Based on the receptive field profiles of 46 simple cells recorded from cat visual cortex, our analysis provides a quantitative description of both the receptive-field envelope and the receptive-field ‘symmetry’ of each of the 46 cells. The results support the notion that, to a first approximation, Gabor functions with three free parameters (envelope width, carrier frequency and carrier phase) provide a good description of the receptive-field profiles. However, our analysis does not support the notion that simple cells generally fit into even- and odd-symmetric categories.


Sign in / Sign up

Export Citation Format

Share Document