Structure of the convex hull of a space curve

1986 ◽  
Vol 33 (4) ◽  
pp. 1140-1153 ◽  
Author(s):  
V. D. Sedykh
Keyword(s):  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Kristian Ranestad ◽  
Bernd Sturmfels
Keyword(s):  

1967 ◽  
Vol 4 (03) ◽  
pp. 543-552 ◽  
Author(s):  
Morris Skibinsky

Let p denote the class of all probability measures defined on the Borel subsets of the unit interval I = [0, 1]. For each positive integer n, take Mn is convex, closed, bounded, and n-dimensional; the convex hull of the space curve {(t,t2, …, tn ): 0 ≦ t ≦ 1}; e.g., see Theorems 7.2, 7.3 of [1]. At each point (c1, C2, …, cn ) of Mn , define Note that v −, v + depend only on C1, C2, …, Cn− 1; Vm only on cn ; We shall as notational convenience dictates and as will be apparent from the context regard v ± n as functions on Mn− 1 or on higher order moment spaces and also regard Vn as a function on moment spaces of order higher than n.


1967 ◽  
Vol 4 (3) ◽  
pp. 543-552 ◽  
Author(s):  
Morris Skibinsky

Let p denote the class of all probability measures defined on the Borel subsets of the unit interval I = [0, 1]. For each positive integer n, take Mn is convex, closed, bounded, and n-dimensional; the convex hull of the space curve {(t,t2, …, tn): 0 ≦ t ≦ 1}; e.g., see Theorems 7.2, 7.3 of [1]. At each point (c1, C2, …, cn) of Mn, define Note that v−, v+ depend only on C1, C2, …, Cn− 1; Vm only on cn; We shall as notational convenience dictates and as will be apparent from the context regard v±n as functions on Mn− 1 or on higher order moment spaces and also regard Vn as a function on moment spaces of order higher than n.


1989 ◽  
Vol 136 (6) ◽  
pp. 530
Author(s):  
G.R. Wilson ◽  
B.G. Batchelor
Keyword(s):  

2019 ◽  
Vol 31 (5) ◽  
pp. 761
Author(s):  
Xiao Lin ◽  
Zuxiang Liu ◽  
Xiaomei Zheng ◽  
Jifeng Huang ◽  
Lizhuang Ma

Sign in / Sign up

Export Citation Format

Share Document