The range of the (n + 1)th moment for distributions on [0, 1]

1967 ◽  
Vol 4 (03) ◽  
pp. 543-552 ◽  
Author(s):  
Morris Skibinsky

Let p denote the class of all probability measures defined on the Borel subsets of the unit interval I = [0, 1]. For each positive integer n, take Mn is convex, closed, bounded, and n-dimensional; the convex hull of the space curve {(t,t2, …, tn ): 0 ≦ t ≦ 1}; e.g., see Theorems 7.2, 7.3 of [1]. At each point (c1, C2, …, cn ) of Mn , define Note that v −, v + depend only on C1, C2, …, Cn− 1; Vm only on cn ; We shall as notational convenience dictates and as will be apparent from the context regard v ± n as functions on Mn− 1 or on higher order moment spaces and also regard Vn as a function on moment spaces of order higher than n.

1967 ◽  
Vol 4 (3) ◽  
pp. 543-552 ◽  
Author(s):  
Morris Skibinsky

Let p denote the class of all probability measures defined on the Borel subsets of the unit interval I = [0, 1]. For each positive integer n, take Mn is convex, closed, bounded, and n-dimensional; the convex hull of the space curve {(t,t2, …, tn): 0 ≦ t ≦ 1}; e.g., see Theorems 7.2, 7.3 of [1]. At each point (c1, C2, …, cn) of Mn, define Note that v−, v+ depend only on C1, C2, …, Cn− 1; Vm only on cn; We shall as notational convenience dictates and as will be apparent from the context regard v±n as functions on Mn− 1 or on higher order moment spaces and also regard Vn as a function on moment spaces of order higher than n.


1962 ◽  
Vol 14 ◽  
pp. 565-567 ◽  
Author(s):  
P. J. McCarthy

The Bernoulli polynomials of order k, where k is a positive integer, are defined byBm(k)(x) is a polynomial of degree m with rational coefficients, and the constant term of Bm(k)(x) is the mth Bernoulli number of order k, Bm(k). In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that Bm(k)(x) is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.


1968 ◽  
Vol 5 (3) ◽  
pp. 693-701 ◽  
Author(s):  
Morris Skibinsky

Let n be a positive integer. Denote by Mn the convex, closed, bounded, and n-dimensional set of all n-tuples (c1, c2,···, cn) such that for some probability measure a on the Borel subsets of the unit interval I = [0,1].


1968 ◽  
Vol 5 (03) ◽  
pp. 693-701 ◽  
Author(s):  
Morris Skibinsky

Let n be a positive integer. Denote by Mn the convex, closed, bounded, and n-dimensional set of all n-tuples (c 1, c 2,···, c n) such that for some probability measure a on the Borel subsets of the unit interval I = [0,1].


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


1991 ◽  
Vol 14 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Clark Kimberling

Associated with any irrational numberα>1and the functiong(n)=[αn+12]is an array{s(i,j)}of positive integers defined inductively as follows:s(1,1)=1,s(1,j)=g(s(1,j−1))for allj≥2,s(i,1)=the least positive integer not amongs(h,j)forh≤i−1fori≥2, ands(i,j)=g(s(i,j−1))forj≥2. This work considers algebraic integersαof degree≥3for which the rows of the arrays(i,j)partition the set of positive integers. Such an array is called a Stolarsky array. A typical result is the following (Corollary 2): ifαis the positive root ofxk−xk−1−…−x−1fork≥3, thens(i,j)is a Stolarsky array.


1970 ◽  
Vol 11 (4) ◽  
pp. 417-420
Author(s):  
Tze-Chien Sun ◽  
N. A. Tserpes

In [6] we announced the following Conjecture: Let S be a locally compact semigroup and let μ be an idempotent regular probability measure on S with support F. Then(a) F is a closed completely simple subsemigroup.(b) F is isomorphic both algebraically and topologically to a paragroup ([2], p.46) X × G × Y where X and Y are locally compact left-zero and right-zero semi-groups respectively and G is a compact group. In X × G × Y the topology is the product topology and the multiplication of any two elements is defined by , x where [y, x′] is continuous mapping from Y × X → G.(c) The induced μ on X × G × Y can be decomposed as a product measure μX × μG× μY where μX and μY are two regular probability measures on X and Y respectively and μG is the normed Haar measure on G.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


Sign in / Sign up

Export Citation Format

Share Document