Complete affine locally flat manifolds with a free fundamental group

1987 ◽  
Vol 36 (1) ◽  
pp. 129-139 ◽  
Author(s):  
G. A. Margulis
Author(s):  
Oscar Ocampo

Let [Formula: see text]. In this paper, we show that for any abelian subgroup [Formula: see text] of [Formula: see text] the crystallographic group [Formula: see text] has Bieberbach subgroups [Formula: see text] with holonomy group [Formula: see text]. Using this approach, we obtain an explicit description of the holonomy representation of the Bieberbach group [Formula: see text]. As an application, when the holonomy group is cyclic of odd order, we study the holonomy representation of [Formula: see text] and determine the existence of Anosov diffeomorphisms and Kähler geometry of the flat manifold [Formula: see text] with fundamental group the Bieberbach group [Formula: see text].


This chapter surveys developments arising from John Milnor's 1958 paper, “On the existence of a connection with curvature zero” and his 1977 paper, “On fundamental groups of complete affinely flat manifolds.” The former deeply influenced the theory of characteristic classes of flat bundles, and the latter clarified the theory of affine manifolds, setting the stage for its future flourishing. This chapter begins with some reminiscences on Milnor. It then describes the history of the Milnor–Wood inequality and the Auslander Conjecture and then proceeds to more recent developments, including a description of Margulis space-times, a startling example of an affine three-manifold with free fundamental group.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Genildo de Jesus Nery

Abstract In this article, we calculate the profinite genus of the fundamental group of an 𝑛-dimensional compact flat manifold 𝑋 with holonomy group of prime order. As consequence, we prove that if n ⩽ 21 n\leqslant 21 , then 𝑋 is determined among all 𝑛-dimensional compact flat manifolds by the profinite completion of its fundamental group. Furthermore, we characterize the isomorphism class of the profinite completion of the fundamental group of 𝑋 in terms of the representation genus of its holonomy group.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


Author(s):  
Ahmed Abbes ◽  
Michel Gros

This chapter continues the construction and study of the p-adic Simpson correspondence and presents the global aspects of the theory of representations of the fundamental group and the torsor of deformations. After fixing the notation and general conventions, the chapter develops preliminaries and then introduces the results and complements on the notion of locally irreducible schemes. It also fixes the logarithmic geometry setting of the constructions and considers a number of results on the Koszul complex. Finally, it develops the formalism of additive categories up to isogeny and describes the inverse systems of a Faltings ringed topos, with a particular focus on the notion of adic modules and the finiteness conditions adapted to this setting. The chapter rounds up the discussion with sections on Higgs–Tate algebras and Dolbeault modules.


2020 ◽  
pp. 107560
Author(s):  
Daciberg Lima Gonçalves ◽  
John Guaschi ◽  
Oscar Ocampo ◽  
Carolina de Miranda e Pereiro

2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


Sign in / Sign up

Export Citation Format

Share Document