characteristic classes
Recently Published Documents


TOTAL DOCUMENTS

653
(FIVE YEARS 47)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
pp. 1-16
Author(s):  
André G. Oliveira

Abstract Given any topological group G, the topological classification of principal G-bundles over a finite CW-complex X is long known to be given by the set of free homotopy classes of maps from X to the corresponding classifying space BG. This classical result has been long-used to provide such classification in terms of explicit characteristic classes. However, even when X has dimension 2, there is a case in which such explicit classification has not been explicitly considered. This is the case where G is a Lie group, whose group of components acts nontrivially on its fundamental group $\pi_1G$ . Here, we deal with this case and obtain the classification, in terms of characteristic classes, of principal G-bundles over a finite CW-complex of dimension 2, with G is a Lie group such that $\pi_0G$ is abelian.


2021 ◽  
pp. 1-32
Author(s):  
Tsuyoshi Kato ◽  
Daisuke Kishimoto ◽  
Mitsunobu Tsutaya

Given a countable metric space, we can consider its end. Then a basis of a Hilbert space indexed by the metric space defines an end of the Hilbert space, which is a new notion and different from an end as a metric space. Such an indexed basis also defines unitary operators of finite propagation, and these operators preserve an end of a Hilbert space. Then, we can define a Hilbert bundle with end, which lightens up new structures of Hilbert bundles. In a special case, we can define characteristic classes of Hilbert bundles with ends, which are new invariants of Hilbert bundles. We show Hilbert bundles with ends appear in natural contexts. First, we generalize the pushforward of a vector bundle along a finite covering to an infinite covering, which is a Hilbert bundle with end under a mild condition. Then we compute characteristic classes of some pushforwards along infinite coverings. Next, we will show the spectral decompositions of nice differential operators give rise to Hilbert bundles with ends, which elucidate new features of spectral decompositions. The spectral decompositions we will consider are the Fourier transform and the harmonic oscillators.


2021 ◽  
Vol 33 (1) ◽  
pp. 65-84
Author(s):  
M. Lanini ◽  
K. Zainoulline

The present paper is devoted to twisted foldings of root systems that generalize the involutive foldings corresponding to automorphisms of Dynkin diagrams. A motivating example is Lusztig’s projection of the root system of type E 8 E_8 onto the subring of icosians of the quaternion algebra, which gives the root system of type H 4 H_4 . By using moment graph techniques for any such folding, a map at the equivariant cohomology level is constructed. It is shown that this map commutes with characteristic classes and Borel maps. Restrictions of this map to the usual cohomology of projective homogeneous varieties, to group cohomology and to their virtual analogues for finite reflection groups are also introduced and studied.


Author(s):  
Fabio Tanania

AbstractExtending (Smirnov and Vishik, Subtle Characteristic Classes, arXiv:1401.6661), we obtain a complete description of the motivic cohomology with $${{\,\mathrm{\mathbb {Z}}\,}}/2$$ Z / 2 -coefficients of the Nisnevich classifying space of the spin group $$Spin_n$$ S p i n n associated to the standard split quadratic form. This provides us with very simple relations among subtle Stiefel–Whitney classes in the motivic cohomology of Čech simplicial schemes associated to quadratic forms from $$I^3$$ I 3 , which are closely related to $$Spin_n$$ S p i n n -torsors over the point. These relations come from the action of the motivic Steenrod algebra on the second subtle Stiefel–Whitney class. Moreover, exploiting the relation between $$Spin_7$$ S p i n 7 and $$G_2$$ G 2 , we describe completely the motivic cohomology ring of the Nisnevich classifying space of $$G_2$$ G 2 . The result in topology was obtained by Quillen (Math Ann 194:197–212, 1971).


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Daniel Sheinbaum ◽  
Omar Antolín Camarena

Abstract For symmorphic crystalline interacting gapped systems we derive a classification under adiabatic evolution. This classification is complete for non-degenerate ground states. For the degenerate case we discuss some invariants given by equivariant characteristic classes. We do not assume an emergent relativistic field theory nor that phases form a topological spectrum. We also do not restrict to systems with short-range entanglement, stability against stacking with trivial systems nor assume the existence of quasi-particles as is done in SPT and SET classifications respectively. Using a slightly generalized Bloch decomposition and Grassmanians made out of ground state spaces, we show that the P-equivariant cohomology of a d-dimensional torus gives rise to different interacting phases, where P denotes the point group of the crystalline structure. We compare our results to bosonic symmorphic crystallographic SPT phases and to non-interacting fermionic crystallographic phases in class A. Finally we discuss the relation of our assumptions to those made for crystallographic SPT and SET phases.


Author(s):  
Manuel Amann ◽  
Christian Lange ◽  
Marco Radeschi

AbstractManifolds all of whose geodesics are closed have been studied a lot, but there are only few examples known. The situation is different if one allows in addition for orbifold singularities. We show, nevertheless, that the abundance of new examples is restricted to even dimensions. As one key ingredient we provide a characterization of orientable manifolds among orientable orbifolds in terms of characteristic classes.


Sign in / Sign up

Export Citation Format

Share Document