Effects of phenoxybenzamine on insulin secretion from isolated rat islets of Langerhans

1989 ◽  
Vol 9 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Susan L. F. Chan ◽  
Noel G. Morgan

In isolated rat islets the α2-adrenergic antagonist phenoxybenzamine was found to be only partially effective at relieving the inhibition of glucose-induced insulin secretion mediated by noradrenaline. Further experiment revealed a direct inhibitory effects of phenoxybenzamine itself on the secretory response to glucose. At concentrations above 1 μM the antagonist inhibited insulin secretion in a dose-dependent manner, with greater than 50% inhibition at 50 μM. The inhibition of secretion developed rapidly in perifused islets, and was not altered when islets were also incubated with idazoxan or benextramine, suggesting that it did not reflect binding of phenoxybenzamine to the α2-receptor. Paradoxically phenoxybenzamine significantly increased the basal secretion rate in the presence of 4 mM glucose. The results demonstrate that phenoxybenzamine can exert direct effects on insulin secretion which are unrelated to its α-antagonist properties.

1992 ◽  
Vol 43 (8) ◽  
pp. 1859-1864 ◽  
Author(s):  
Mitsuaki Ohta ◽  
David Nelson ◽  
Jeanne M. Wilson ◽  
Martin D. Meglasson ◽  
Maria Erecińska

1985 ◽  
Vol 228 (3) ◽  
pp. 713-718 ◽  
Author(s):  
N G Morgan ◽  
G M Rumford ◽  
W Montague

Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.


1991 ◽  
Vol 35 (3-4) ◽  
pp. 155-160 ◽  
Author(s):  
J.M. Pou ◽  
T. Cervera ◽  
A. Perez ◽  
M.A. Ortiz ◽  
J.A. Arroyo

1989 ◽  
Vol 257 (4) ◽  
pp. E479-E485 ◽  
Author(s):  
R. W. Bergstrom ◽  
W. Y. Fujimoto ◽  
D. C. Teller ◽  
C. de Haen

After a step-function increase in glucose concentration, insulin secretion by perifused isolated rat islets of Langerhans showed oscillations superimposed on the well-known first- and second-phase secretory components. The oscillations were sustained for the length of the experiment and corresponded to at least four cycles. This established the existence of an oscillatory pacemaker with a narrow dispersion of periodicities intrinsic to the islets and showed that synchronization of islet action could be achieved by a step-function increase in glucose concentration. The observed period of 16 min is similar to the period of oscillatory insulin secretion in a number of intact organisms. This argues for identity of pacemakers in vivo and in isolated islets. This means that neural or other forms of interislet communication are not prerequisites for oscillatory insulin secretion. Theophylline increased the length of the oscillatory period, suggesting the periodicity of the pacemaker of insulin secretion can be metabolically regulated. This observation also provided a basis for explaining fine tuning of oscillatory periods by the nervous system.


1991 ◽  
Vol 42 (3) ◽  
pp. 593-598 ◽  
Author(s):  
Ohta Mitsuaki ◽  
David Nelson ◽  
June Nelson ◽  
Martin D Meglasson ◽  
Maria Erecińska

Sign in / Sign up

Export Citation Format

Share Document