Bioscience Reports
Latest Publications


TOTAL DOCUMENTS

5482
(FIVE YEARS 2225)

H-INDEX

80
(FIVE YEARS 16)

Published By Portland Press

1573-4935, 0144-8463

2022 ◽  
Author(s):  
Yibin Zeng ◽  
Hongying Zhao ◽  
Tong Zhang ◽  
Chao Zhang ◽  
Yanni He ◽  
...  

Background: Punicalagin (Pun) is one of the main bioactive compounds in pomegranate peel, it possesses many properties, including antioxidant, anti-inflammation, and immunosuppressive activities. The study was aimed to investigate the protective effect and mechanisms of Pun on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice. Methods and Results: Forty-eight BALB/c male mice were used to establish ALI by intratracheal-instilled 2.4 mg/kg LPS, the mice were randomly divided into model and Pun (10, 20, 40 mg/kg) groups. The other twelve mice were intratracheal-instilled same volume of water as control. After 2 h of receiving LPS, mice were administrated drug through intraperitoneal injection. Lung index, histopathological changes, white blood cells and biomarkers in bronchoalveolar lavage fluid (BALF) were analyzed. The protein expression of total and phosphor p65, IκBα, ERK1/2, JNK and p38 in lung tissue was detected. The result showed that Pun could reduce the lung index and wet/dry weight ratio, improve lung histopathological injury. In addition, Pun decreased the inflammation cells and regulated the biomarkers in BALF. Furthermore, Pun dose-dependently reduced the phosphor protein levels of p65, IκBα, ERK1/2, JNK and p38 in lung tissue, which exhibited that the effect of Pun related to MAPKs pathway. More importantly, there is no toxicity was observed in the acute toxicity study of Pun. Conclusion: Pun improves LPS-induced ALI mainly through its anti-inflammatory properties, which is associated with NF-κB and MAPKs signaling pathways. The study implied that Pun maybe a potent agent against ALI in future clinic.


2022 ◽  
Author(s):  
Thongher Lia ◽  
Yanxiang Shao ◽  
Parbatraj Regmi ◽  
Xiang Li

Bladder cancer is one of the highly heterogeneous disorders accompanied by a poor prognosis. This study aimed to construct a model based on pyroptosis‑related lncRNA to evaluate the potential prognostic application in bladder cancer. The mRNA expression profiles of bladder cancer patients and corresponding clinical data were downloaded from the public database from The Cancer Genome Atlas (TCGA). Pyroptosis‑related lncRNAs were identified by utilizing a co-expression network of Pyroptosis‑related genes and lncRNAs. The lncRNA was further screened by univariate Cox regression analysis. Finally, 8 pyroptosis-related lncRNA markers were established using Lasso regression and multivariate Cox regression analysis. Patients were separated into high and low-risk groups based on the performance value of the median risk score. Patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group (p < 0.001), and In multivariate Cox regression analysis, the risk score was an independent predictive factor of OS ( HR>1, P<0.01). The area under the curve (AUC) of the 3- and 5-year OS in the receiver operating characteristic (ROC) curve were 0.742 and 0.739 respectively. In conclusion, these 8 pyroptosis-related lncRNA and their markers may be potential molecular markers and therapeutic targets for bladder cancer patients.


2022 ◽  
Author(s):  
Neva Caliskan ◽  
Chris H. Hill

Cardioviruses are single-stranded RNA viruses of the family Picornaviridae. In addition to being the first example of internal ribosome entry site utilization, cardioviruses also employ a series of alternative translation strategies, such as Stop-Go translation and programmed ribosome frameshifting. Here, we focus on cardiovirus 2A protein, which is not only a primary virulence factor, but also exerts crucial regulatory functions during translation, including activation of viral ribosome frameshifting and inhibition of host cap-dependent translation. Only recently, biochemical and structural studies have allowed us to close the gaps in our knowledge of how cardiovirus 2A is able to act in diverse translation-related processes as a novel RNA-binding protein. This review will summarize these findings, which ultimately may lead to the discovery of other RNA-mediated gene expression strategies across a broad range of RNA viruses.


2022 ◽  
Author(s):  
Chih-Jung Chen ◽  
Ting-Hao Chen ◽  
Jason Lei ◽  
Ji-An Liang ◽  
Po-Sheng Yang ◽  
...  

Breast cancer is the most common cancer and the leading cause of cancer-related death in women. The estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are important biomarkers in the prognosis of breast cancer, and their expression is used to categorize breast cancer into subtypes. We aimed to analyze the concordance between ER, PR, and HER2 expression levels and breast cancer subtyping results obtained by immunohistochemistry (IHC, for protein) and reverse transcriptase-polymerase chain reaction (RT-PCR, for mRNA) and to assess the recurrence-free survival (RFS) of the different subtypes as determined by the two methods. We compared biomarker expression by IHC and RT-PCR in 397 operable breast cancer patients and categorized all patients into luminal, HER2, and triple-negative (TN) subtypes. The concordance of biomarker expression between the two methods was 81.6% (kappa = 0.4075) for ER, 87.2% (kappa = 0.5647) for PR, and 79.1% (kappa = 0.2767) for HER2. The kappa statistic was 0.3624 for the resulting luminal, HER2, and TN subtypes. The probability of a 5-year RFS was 0.78 for the luminal subtype versus 0.77 for HER2 and 0.51 for TN, when determined by IHC (p = 0.007); and 0.80, 0.71, and 0.61, respectively, when determined by the RT-PCR method (p = 0.008). Based on the current evidence, subtyping by RT-PCR performs similarly to conventional IHC with regard to the 5-year prognosis. The PCR method may thus provide a complementary means of subtyping when IHC results are ambiguous.


2022 ◽  
Author(s):  
Jiangnan Huang ◽  
Yumei Li ◽  
Zhiyuan Jiang ◽  
Lingjun Wu ◽  
Yueying Liu ◽  
...  

Purpose: Our previous data indicated that miR‑24-3p is involved in the regulation of vascular endothelial cell proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of IL-1β in hypoxic HUVECs. Methods: We assessed the mRNA expression levels of miR-24-3p, HIF1A and NKAP by RT-qPCR. ELISA measured the expression level of IL-1β. CCK-8 assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p. Results: We demonstrated that in AMI patient blood samples, the expression of miR-24-3p is downregulated, the expression of IL-1β or NKAP is upregulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by downregulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NF-kappa-B-activating protein (NKAP) is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-kB/pro-IL-1β signaling pathway. However, IL‑1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF‑κB pathway. In conclusion, our results reveal a new function of IL‑1β in suppressing miR-24-3p upregulation of the NKAP/NF-kB pathway.


2022 ◽  
Author(s):  
Weiyuan Fang ◽  
Guorui Zhang ◽  
Yali Yu ◽  
Hongjie Chen ◽  
Hong Liu

Objective: To explore the value of quantitative parameters of artificial intelligence and computed tomography (CT) signs in identifying pathological subtypes of lung adenocarcinoma appearing as ground-glass nodules (GGNs). Methods: CT images of 224 GGNs from 210 individuals were collected retrospectively and pathologically classified into atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) groups. Artificial intelligence was used to identify GGNs and to obtain quantitative parameters, and CT signs were recognized manually. The mixed predictive model based on logistic multivariate regression was evaluated. Results: Of the 224 GGNs, 55, 93, and 76 were AAH/AIS, MIA, IAC, respectively. In terms of artificial intelligence parameters, from AAH/AIS to MIA, and IAC, there was a gradual increase in two-dimensional mean diameter, three-dimensional mean diameter, mean CT value, maximum CT value, and volume of GGNs (all P < 0.0001). Except for the CT signs of the location, and the tumor-lung interface, there were significant differences among the three groups in the density type, shape, vacuole signs, air bronchogram, lobulation, spiculation, pleural indentation, and vascular convergence signs (all P < 0.05). The areas under the curve (AUC) of predictive model 1 for identifying the AAH/AIS and MIA and model 2 for identifying MIA and IAC were 0.779 and 0.918, respectively, which were greater than the quantitative parameters independently (all P < 0.05). Conclusion: Artificial intelligence parameters are valuable for identifying subtypes of early lung adenocarcinoma, and when combined with CT signs to improve its diagnostic efficacy.


2022 ◽  
Author(s):  
Feng Liu ◽  
Zewei Tu ◽  
Junzhe Liu ◽  
Xiaoyan Long ◽  
Bing Xiao ◽  
...  

Background: The role of DNAJC10 in cancers have been reported but its function in glioma is not clear. We reveal the prognostic role and underlying functions of DNAJC10 in glioma in this study. Methods: Reverse Transcription and Quantitative Polymerase Chain Reaction (RT-qPCR) was used to quantify the relative DNAJC10 mRNA expression of clinical samples. Protein expressions of clinical samples were tested by Western blot. The overall survival (OS) of glioma patients with different DNAJC10 expression was compared by Kaplan-Meier method (two-sided log-rank test). Single-sample gene set enrichment analysis (ssGSEA) was used to estimate the immune cell infiltrations and immune-related function levels. The independent prognostic role of DNAJC10 was determined by univariate and multivariate Cox regression analysis. The DNAJC10-based nomogram model was established using multivariate Cox regression by R package “rms”. Results: Higher DNAJC10 is observed in gliomas and it’s upregulated in higher grade, IDH-wild, 1p/19q non-codeletion, MGMT unmethylated gliomas. Gliomas with higher DNAJC10 expression present poorer prognosis compared with low-DNAJC10 gliomas. The predictive accuracy of 1/3/5-OS of DNAJC10 is found stable and robust using time-dependent ROC model. Enrichment analysis recognized that T-cell activation and T-cell receptor signaling were enriched in higher DNAJC10 gliomas. Immune/stromal cell infiltrations, tumor mutation burden (TMB), copy Number Alteration (CNA) burden, and immune check-point genes were also positively correlated with DNAJC10 expression in gliomas. DNAJ10-based nomogram model was established and showed strong prognosis-predictive ability. Conclusion: Higher DNAJC10 expression correlates with poor prognosis of glioma and it was a potential prognostic biomarker for glioma.


2022 ◽  
Author(s):  
Liubov Gapa ◽  
Huda Alfardus ◽  
Wolfgang Fischle

Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosyl methionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and non-enzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.


2022 ◽  
Author(s):  
Tao Guo ◽  
Ran Wei ◽  
Dylan C Dean ◽  
Francis Hornicek ◽  
Zhenfeng Duan

Background: Although weak SMARCB1 expression is a known diagnostic and prognostic biomarker in several malignancies, its expression and clinical significance in osteosarcoma remain unknown. The aim of this study was to investigate SMARCB1 expression in osteosarcoma and its clinical significance with respect to chemosensitivity and prognosis. Methods: We obtained 114 specimens from 70 osteosarcoma patients to construct a tissue microarray (TMA) and assess SMARCB1 protein expression via immunohistochemistry. The mRNA expression of SMARCB1 was in silico analyzed using open-access RNA sequencing (RNA-Seq) and clinicopathological data provided by the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) project. The correlations between SMARCB1 expression and clinical features were statistically analyzed. Results: Weak SMARCB1 expression occurred in 70% of the osteosarcoma patient specimens in the tissue microarray, and significantly correlated with poor neoadjuvant response as well as shorter overall and progression-free survival. In addition, mRNA in silico analysis confirmed SMARCB1 expression correlates with chemotherapeutic response and prognosis in osteosarcoma patients. Conclusion: To our knowledge, this study is the first to analyze SMARCB1 expression in osteosarcoma. SMARCB1 may serve as a novel diagnostic and prognostic biomarker in osteosarcoma.


2022 ◽  
Author(s):  
Tie Sun ◽  
Hui-Ye Shu ◽  
Jie-Li Wu ◽  
Ting Su ◽  
Yu-Ji Liu ◽  
...  

Objective: The local characteristics of spontaneous brain activity in patients with dry eye (DE) and its relationship with clinical characteristics were evaluated using the amplitude of low-frequency fluctuations (ALFF) method. Methods: A total of 27 patients with DE (10 males and 17 females) and 28 healthy controls (HCs) (10 males and 18 females) were recruited, matched according to sex, age, weight, and height, classified into the DE and HC groups, and examined using functional magnetic resonance imaging scans. Spontaneous brain activity changes were recorded using ALFF technology. Data were recorded and plotted on the receiver operating characteristic curve, reflecting changes in activity in different brain areas. Finally, Pearson correlation analysis was used to calculate the potential relationship between spontaneous brain activity abnormalities in multiple brain regions and clinical features in patients with DE. GraphPad Prism 8 (GraphPad Software, Inc.) was used to analyze the linear correlation between the Hospital Anxiety and Depression Scale and ALFF value. Results: Compared with HCs, the ALFF values of patients with DE were decreased in the right middle frontal gyrus/right inferior orbitofrontal cortex, left triangle inferior frontal gyrus, left middle frontal gyrus, and right superior frontal gyrus. In contrast, the ALFF value of patients with DE was increased in the left calcarine. Conclusion: There are significant fluctuations in the ALFF value of specific brain regions in patients with DE versus HCs. This corroborates previous evidence showing that the symptoms of ocular surface damage in patients with DE are related to dysfunction in specific brain areas.


Sign in / Sign up

Export Citation Format

Share Document