On designs with intersection numbers 0 and 2

1989 ◽  
Vol 52 (4) ◽  
pp. 407-412 ◽  
Author(s):  
V. C. Mavron ◽  
M. S. Shrikhande
Keyword(s):  
Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the construction as well as the algebraic and dynamical properties of pseudo-Anosov homeomorphisms. It first presents five different constructions of pseudo-Anosov mapping classes: branched covers, constructions via Dehn twists, homological criterion, Kra's construction, and a construction for braid groups. It then proves a few fundamental facts concerning stretch factors of pseudo-Anosov homeomorphisms, focusing on the theorem that pseudo-Anosov stretch factors are algebraic integers. It also considers the spectrum of pseudo-Anosov stretch factors, along with the special properties of those measured foliations that are the stable (or unstable) foliations of some pseudo-Anosov homeomorphism. Finally, it describes the orbits of a pseudo-Anosov homeomorphism as well as lengths of curves and intersection numbers under iteration.


2004 ◽  
Vol 114 (2) ◽  
Author(s):  
Toyoshi Togi

2008 ◽  
Vol 4 (4) ◽  
pp. 1165-1204
Author(s):  
Kevin Keating ◽  
David P. Roberts

2017 ◽  
Vol 21 (3) ◽  
pp. 531-542 ◽  
Author(s):  
Amin Gholampour ◽  
Artan Sheshmani

2015 ◽  
Vol 152 (4) ◽  
pp. 769-824 ◽  
Author(s):  
Keerthi Madapusi Pera

We construct regular integral canonical models for Shimura varieties attached to Spin and orthogonal groups at (possibly ramified) primes$p>2$where the level is not divisible by$p$. We exhibit these models as schemes of ‘relative PEL type’ over integral canonical models of larger Spin Shimura varieties with good reduction at$p$. Work of Vasiu–Zink then shows that the classical Kuga–Satake construction extends over the integral models and that the integral models we construct are canonical in a very precise sense. Our results have applications to the Tate conjecture for K3 surfaces, as well as to Kudla’s program of relating intersection numbers of special cycles on orthogonal Shimura varieties to Fourier coefficients of modular forms.


Sign in / Sign up

Export Citation Format

Share Document