Reciprocity for Fredholm operators (lefschetz numbers/steinberg symbols/holomorphic chains/local index)

1986 ◽  
Vol 9 (4) ◽  
pp. 469-501 ◽  
Author(s):  
R. W. Carey ◽  
J. D. Pincus
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


2021 ◽  
pp. 2100115
Author(s):  
I. Krešić ◽  
K. G. Makris ◽  
S. Rotter

1988 ◽  
Vol 198 (3) ◽  
pp. 431-434 ◽  
Author(s):  
M�che�l � Searc�id

2021 ◽  
Author(s):  
Katsunari Shibata ◽  
Takuya Ejima ◽  
Yuki Tokumaru ◽  
Toshitaka Matsuki
Keyword(s):  

1989 ◽  
Vol 284 (4) ◽  
pp. 681-699 ◽  
Author(s):  
Jean-Michel Bismut

Author(s):  
H. Rostami ◽  
J. Habibi ◽  
H. Abolhassani ◽  
M. Amirkhani ◽  
A. Rahnama
Keyword(s):  

1989 ◽  
Vol 7 (2) ◽  
pp. 93-106 ◽  
Author(s):  
Anvar Irmatov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document