Economical finite rank perturbations of semi-Fredholm operators

1988 ◽  
Vol 198 (3) ◽  
pp. 431-434 ◽  
Author(s):  
M�che�l � Searc�id
1993 ◽  
Vol 113 (1) ◽  
pp. 173-177 ◽  
Author(s):  
Mostafa Mbekhta

AbstractThe Laffey–West theorem concerning finite rank perturbations of bounded Fredholm operators is extended to closed densely defined operators on Banach Spaces.


2018 ◽  
Vol 61 (4) ◽  
pp. 1063-1068 ◽  
Author(s):  
Mohammed Berkani

AbstractIn this paper we define B-Fredholm elements in a Banach algebraAmodulo an idealJofA. When a trace function is given on the idealJ, it generates an index for B-Fredholm elements. In the case of a B-Fredholm operatorTacting on a Banach space, we prove that its usual index ind(T) is equal to the trace of the commutator [T, T0], whereT0is a Drazin inverse ofTmodulo the ideal of finite rank operators, extending Fedosov's trace formula for Fredholm operators (see Böttcher and Silbermann [Analysis of Toeplitz operators, 2nd edn (Springer, 2006)]. In the case of a primitive Banach algebra, we prove a punctured neighbourhood theorem for the index.


2019 ◽  
Vol 2019 (746) ◽  
pp. 67-116 ◽  
Author(s):  
Jens Kaad ◽  
Ryszard Nest

Abstract We investigate the analytic properties of torsion isomorphisms (determinants) of mapping cone triangles of Fredholm complexes. Our main tool is a generalization to Fredholm complexes of the perturbation isomorphisms constructed by R. Carey and J. Pincus for Fredholm operators. A perturbation isomorphism is a canonical isomorphism of determinants of homology groups associated to a finite rank perturbation of Fredholm complexes. The perturbation isomorphisms allow us to establish the invariance properties of the torsion isomorphisms under finite rank perturbations. We then show that the perturbation isomorphisms provide a holomorphic structure on the determinant lines over the space of Fredholm complexes. Finally, we establish that the torsion isomorphisms and the perturbation isomorphisms provide holomorphic sections of certain determinant line bundles.


Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Graham A. Niblo ◽  
Nick Wright ◽  
Jiawen Zhang

AbstractThis paper establishes a new combinatorial framework for the study of coarse median spaces, bridging the worlds of asymptotic geometry, algebra and combinatorics. We introduce a simple and entirely algebraic notion of coarse median algebra which simultaneously generalises the concepts of bounded geometry coarse median spaces and classical discrete median algebras. We study the coarse median universe from the perspective of intervals, with a particular focus on cardinality as a proxy for distance. In particular we prove that the metric on a quasi-geodesic coarse median space of bounded geometry can be constructed up to quasi-isometry using only the coarse median operator. Finally we develop a concept of rank for coarse median algebras in terms of the geometry of intervals and show that the notion of finite rank coarse median algebra provides a natural higher dimensional analogue of Gromov’s concept of $$\delta $$ δ -hyperbolicity.


Author(s):  
Clément Luneau ◽  
Jean Barbier ◽  
Nicolas Macris

Abstract We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new non-trivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.


Sign in / Sign up

Export Citation Format

Share Document