OnC 0-semigroups of lattice homomorphisms on a Banach lattice

1978 ◽  
Vol 164 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Manfred Wolff
Author(s):  
Antonio Avilés ◽  
Pedro Tradacete

Abstract We study distinguished objects in the category $\mathcal{B}\mathcal{L}$ of Banach lattices and lattice homomorphisms. The free Banach lattice construction introduced by de Pagter and Wickstead [ 8] generates push-outs, and combining this with an old result of Kellerer [ 17] on marginal measures, the amalgamation property of Banach lattices is established. This will be the key tool to prove that $L_1([0,1]^{\mathfrak{c}})$ is separably $\mathcal{B}\mathcal{L}$-injective, as well as to give more abstract examples of Banach lattices of universal disposition for separable sublattices. Finally, an analysis of the ideals on $C(\Delta ,L_1)$, which is a separably universal Banach lattice as shown by Leung et al. [ 21], allows us to conclude that separably $\mathcal{B}\mathcal{L}$-injective Banach lattices are necessarily non-separable.


Author(s):  
Ben de Pagter ◽  
Anthony W. Wickstead

We define and prove the existence of free Banach lattices in the category of Banach lattices and contractive lattice homomorphisms, and establish some of their fundamental properties. We give much more detailed results about their structure in the case when there are only a finite number of generators, and give several Banach lattice characterizations of the number of generators being, respectively, one, finite or countable. We define a Banach lattice P to be projective if, whenever X is a Banach lattice, J is a closed ideal in X, Q : X → X/J is the quotient map, T : P → X/J is a linear lattice homomorphism and ε > 0, there exists a linear lattice homomorphism : P → X such that T = Q º and ∥∥ ≤ (1 + ε)∥T∥. We establish the connection between projective Banach lattices and free Banach lattices, describe several families of Banach lattices that are projective and prove that some are not.


1986 ◽  
Vol s2-33 (3) ◽  
pp. 516-524 ◽  
Author(s):  
S. J. Bernau

1984 ◽  
Vol 185 (4) ◽  
pp. 567-571 ◽  
Author(s):  
Wolfgang Arendt

1954 ◽  
Vol 50 (2) ◽  
pp. 242-249
Author(s):  
D. C. J. Burgess

In a previous paper (2) of the author, there was given a treatment of Tauberian theorems for Laplace transforms with values in an arbitrary Banach space. Now, in § 2 of the present paper, this kind of technique is applied to the more special case of Laplace transforms with values in a Banach lattice, and investigations are made on what additional results can be obtained by taking into account the existence of an ordering relation in the space. The general argument is again based on Widder (5) to which frequent references are made.


1993 ◽  
Vol 35 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Denny H. Leung

A Banach space E is said to have Property (w) if every operator from E into E' is weakly compact. This property was introduced by E. and P. Saab in [9]. They observe that for Banach lattices, Property (w) is equivalent to Property (V*), which in turn is equivalent to the Banach lattice having a weakly sequentially complete dual. Thus the following question was raised in [9].Does every Banach space with Property (w) have a weakly sequentially complete dual, or even Property (V*)?In this paper, we give two examples, both of which answer the question in the negative. Both examples are James type spaces considered in [1]. They both possess properties stronger than Property (w). The first example has the property that every operator from the space into the dual is compact. In the second example, both the space and its dual have Property (w). In the last section we establish some partial results concerning the problem (also raised in [9]) of whether (w) passes from a Banach space E to C(K, E).


1986 ◽  
Vol 34 (6) ◽  
pp. 2134-2137
Author(s):  
Yu. A. Abramovich
Keyword(s):  

1992 ◽  
Vol 27 (1-2) ◽  
pp. 33-45 ◽  
Author(s):  
S. J. Bernau

Sign in / Sign up

Export Citation Format

Share Document