Krull dimension, transcendence degree and subalgebras of finitely generated algebras

1981 ◽  
Vol 36 (1) ◽  
pp. 305-312 ◽  
Author(s):  
Jos� M. Giral
2011 ◽  
Vol 84 (3) ◽  
pp. 433-440
Author(s):  
A. HAGHANY ◽  
M. MAZROOEI ◽  
M. R. VEDADI

AbstractGeneralizing the concept of right bounded rings, a module MR is called bounded if annR(M/N)≤eRR for all N≤eMR. The module MR is called fully bounded if (M/P) is bounded as a module over R/annR(M/P) for any ℒ2-prime submodule P◃MR. Boundedness and right boundedness are Morita invariant properties. Rings with all modules (fully) bounded are characterized, and it is proved that a ring R is right Artinian if and only if RR has Krull dimension, all R-modules are fully bounded and ideals of R are finitely generated as right ideals. For certain fully bounded ℒ2-Noetherian modules MR, it is shown that the Krull dimension of MR is at most equal to the classical Krull dimension of R when both dimensions exist.


1990 ◽  
Vol 18 (4) ◽  
pp. 1189-1198 ◽  
Author(s):  
Eloise Hamann

1996 ◽  
Vol 38 (2) ◽  
pp. 137-145
Author(s):  
Sudesh K. Khanduja

Let K/Kobe a finitely generated field extension of transcendence degree 1. Let u0 be a valuation of Koand v a valuation of Kextending v0such that the residue field of vis a transcendental extension ofthe residue field k0of vo/such a prolongation vwill be called a residually transcendental prolongation of v0. Byan element with the uniqueness propertyfor (K, v)/(K0, v0) (or more briefly for v/v0)we mean an element / of Khaving u-valuation 0 which satisfies (i) the image of tunder the canonicalhomomorphism from the valuation ring of vonto the residue field of v(henceforth referred to as the v-residue ot t) is transcendental over ko; that is vcoincides with the Gaussian valuation on the subfield K0(t) defined by (ii) vis the only valuation of K (up to equivalence) extending the valuation .


2010 ◽  
Vol 09 (01) ◽  
pp. 73-122 ◽  
Author(s):  
NICOLE SNASHALL ◽  
RACHEL TAILLEFER

We consider a class of self-injective special biserial algebras ΛN over a field K and show that the Hochschild cohomology ring of dΛN is a finitely generated K-algebra. Moreover, the Hochschild cohomology ring of ΛN modulo nilpotence is a finitely generated commutative K-algebra of Krull dimension two. As a consequence the conjecture of [N. Snashall and Ø. Solberg, Support varieties and Hochschild cohomology rings, Proc. London Math. Soc.88 (2004) 705–732], concerning the Hochschild cohomology ring modulo nilpotence, holds for this class of algebras.


1977 ◽  
Vol 29 (4) ◽  
pp. 874-888 ◽  
Author(s):  
Günter Krause ◽  
Mark L. Teply

Let M be a right ideal of the ring T with identity. A unital subring R of T which contains M as a two-sided ideal is called a subidealizer ; the largest such subring is the idealizer I (M) of M in T. M is said to be generative if TM = T. In this case M is idempotent, and it follows from the dual basis lemma that T is finitely generated projective as a right R-module (see [7, Lemma 2.1]); we make frequent use of these two facts in this paper.


1978 ◽  
Vol 21 (3) ◽  
pp. 373-375 ◽  
Author(s):  
Ira J. Papick

Throughout this note, let R be a (commutative integral) domain with quotient field K. A domain S satisfying R ⊆ S ⊆ K is called an overring of R, and by dimension of a ring we mean Krull dimension. Recall [1] that a commutative ring is said to be coherent if each finitely generated ideal is finitely presented.In [2], as a corollary of a more general theorem, Davis showed that if each overring of a domain R is Noetherian, then the dimension of R is at most 1. (This corollary is the converse of a version of the Krull-Akizuki Theorem [5, Theorem 93], and can also be proved directly by using the existence of valuation rings dominating finite chains of prime ideals [4, Corollary 16.6].) It is our purpose to prove that if R is Noetherian and each overring of R is coherent, then the dimension of £ is at most 1. We shall also indicate some related questions and examples.


2012 ◽  
Vol 19 (04) ◽  
pp. 693-698
Author(s):  
Kazem Khashyarmanesh ◽  
M. Tamer Koşan ◽  
Serap Şahinkaya

Let R be a commutative Noetherian ring with non-zero identity, 𝔞 an ideal of R and M a finitely generated R-module. We assume that N is a weakly Laskerian R-module and r is a non-negative integer such that the generalized local cohomology module [Formula: see text] is weakly Laskerian for all i < r. Then we prove that [Formula: see text] is also weakly Laskerian and so [Formula: see text] is finite. Moreover, we show that if s is a non-negative integer such that [Formula: see text] is weakly Laskerian for all i, j ≥ 0 with i ≤ s, then [Formula: see text] is weakly Laskerian for all i ≤ s and j ≥ 0. Also, over a Gorenstein local ring R of finite Krull dimension, we study the question when the socle of [Formula: see text] is weakly Laskerian?


2016 ◽  
Vol 15 (09) ◽  
pp. 1650176 ◽  
Author(s):  
Charlie Beil

We introduce a theory of geometry for nonnoetherian commutative algebras with finite Krull dimension. In particular, we establish new notions of normalization and height: depiction (a special noetherian overring) and geometric codimension. The resulting geometries are algebraic varieties with positive-dimensional points, and are thus inherently nonlocal. These notions also give rise to new equivalent characterizations of noetherianity that are primarily geometric. We then consider an application to quiver algebras whose simple modules of maximal dimension are one dimensional at each vertex. We show that the vertex corner rings of [Formula: see text] are all isomorphic if and only if [Formula: see text] is noetherian, if and only if the center [Formula: see text] of [Formula: see text] is noetherian, if and only if [Formula: see text] is a finitely generated [Formula: see text]-module. Furthermore, we show that [Formula: see text] is depicted by a commutative algebra generated by the cycles in its quiver. We conclude with an example of a quiver algebra where projective dimension and geometric codimension, rather than height, coincide.


1982 ◽  
Vol 23 (1) ◽  
pp. 9-13 ◽  
Author(s):  
I. M. Musson

The purpose of this note is to prove the following result.Theorem 1. Let n be an integer greater than zero. There exists a prime Noetherian ring R of Krull dimension n + 1 and a finitely generated essential extension W of a simple R-module V suchthat(i) W has Krull dimension n, and(ii) W/V is n-critical and cannot be embedded in any of its proper submodules.We refer the reader to [6] for the definition and properties of Krull dimension.


Sign in / Sign up

Export Citation Format

Share Document