A relation between the maximal term and maximum of the modulus of the entire dirichlet series

1992 ◽  
Vol 51 (5) ◽  
pp. 522-526 ◽  
Author(s):  
M. N. Sheremeta



2005 ◽  
Vol 57 (4) ◽  
pp. 686-693
Author(s):  
O. B. Skaskiv ◽  
O. M. Trakalo




2013 ◽  
Vol 33 (6) ◽  
pp. 1571-1578 ◽  
Author(s):  
Niraj KUMAR ◽  
Garima MANOCHA


2015 ◽  
Vol 67 (6) ◽  
pp. 838-852
Author(s):  
T. Ya. Hlova ◽  
P. V. Filevych


2015 ◽  
Vol 7 (2) ◽  
pp. 172-187 ◽  
Author(s):  
T.Ya. Hlova ◽  
P.V. Filevych

Let $A\in(-\infty,+\infty]$ and $\Phi$ be a continuously on $[\sigma_0,A)$ function such that $\Phi(\sigma)\to+\infty$ as $\sigma\to A-0$. We establish a necessary and sufficient condition on a nonnegative sequence $\lambda=(\lambda_n)$, increasing to $+\infty$, under which the equality$$\overline{\lim\limits_{\sigma\uparrow A}}\frac{\ln M(\sigma,F)}{\Phi(\sigma)}=\overline{\lim\limits_{\sigma\uparrow A}}\frac{\ln\mu(\sigma,F)}{\Phi(\sigma)},$$holds for every Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, $s=\sigma+it$, absolutely convergent in the half-plane ${Re}\, s<A$, where $M(\sigma,F)=\sup\{|F(s)|:{Re}\, s=\sigma\}$ and $\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}:n\ge 0\}$ are the maximum modulus and maximal term of this series respectively.



Sign in / Sign up

Export Citation Format

Share Document